Abstract
Abstract
Background
In Lung adenocarcinoma (LUAD), targeted therapies and immunotherapies have moved from metastatic to early stage and stratification of the relapse risk becomes mandatory. Here we identified a miR-200 based RNA signature that delineates Epithelial-to-mesenchymal transition (EMT) heterogeneity and predicts survival beyond current classification systems.
Methods
A miR-200 signature was identified using RNA sequencing. We scored the miR-200 signature by WISP (Weighted In Silico Pathology), used GSEA to identify pathway enrichments and MCP-counter to characterize immune cell infiltrates. We evaluate the clinical value of this signature in our series of LUAD and using TCGA and 7 published datasets.
Results
We identified 3 clusters based on supervised classification: I is miR-200-sign-down and enriched in TP53 mutations IIA and IIB are miR-200-sign-up: IIA is enriched in EGFR (p < 0.001), IIB is enriched in KRAS mutation (p < 0.001). WISP stratified patients into miR-200-sign-down (n = 65) and miR-200-sign-up (n = 42). Several biological processes were enriched in MiR-200-sign-down tumors, focal adhesion, actin cytoskeleton, cytokine/receptor interaction, TP53 signaling and cell cycle pathways. Fibroblast, immune cell infiltration and PDL1 expression were also significantly higher suggesting immune exhaustion. This signature stratified patients into high-vs low-risk groups, miR-200-sign-up had higher DFS, median not reached at 60 vs 41 months and within subpopulations with stage I, IA, IB, or II. Results were validated on TCGA data on 7 public datasets.
Conclusion
This EMT and miR-200-related prognostic signature refines prognosis evaluation independently of tumor stage and paves the way towards assessing the predictive value of this LUAD clustering to optimize perioperative treatment.
Funder
Institut National du Cancer
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference49 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
2. Remon J, Soria J-C, Peters S. ESMO Guidelines Committee. Electronic address: clinicalguidelines@esmo.org: Early and locally advanced non-small-cell lung cancer: an update of the ESMO Clinical Practice Guidelines focusing on diagnosis, staging, systemic and local therapy. Ann Oncol Off J Eur Soc Med Oncol. 2021;32:1637–42.
3. Daly ME, Singh N, Ismaila N, Antonoff MB, Arenberg DA, Bradley J, et al. Management of stage III non-small-cell lung cancer: ASCO Guideline. J Clin Oncol Off J Am Soc Clin Oncol. 2021;JCO2102528.
4. Schneider BJ, Ismaila N, Aerts J, Chiles C, Daly ME, Detterbeck FC, et al. Lung cancer surveillance after definitive curative-intent therapy: ASCO guideline. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:753–66.
5. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2020;383:1711–23.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献