Author:
Li Ningshan,Huang Hui,Qian Han-Zhu,Liu Peijia,Lu Hui,Liu Xun
Abstract
Abstract
Background
The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate GFR estimation model for Chinese population.
Methods
The enrolled participants came from the Third Affiliated Hospital of Sun Yat-sen University, China from Jan 2012 to Jun 2016. Participants with age < 18, unstable kidney function, taking trimethoprim or cimetidine, or receiving dialysis were excluded. Among the finally enrolled 1952 participants, 1075 participants (55.07%) from Jan 2012 to Dec 2014 were assigned as the development data whereas 877 participants (44.93%) from Jan 2015 to Jun 2016 as the internal validation data. We in total developed 3 GFR estimation models: a 4-variable revised CKD-EPI (chronic kidney disease epidemiology collaboration) equation (standardized serum creatinine and cystatin C, age and gender), a 9-variable revised CKD-EPI equation (additional auxiliary variables: body mass index, blood urea nitrogen, albumin, uric acid and hemoglobin), and a 9-variable ANN model.
Results
Compared with the 4-variable equation, the 9-variable equation could not achieve superior performance in the internal validation data (mean of difference: 5.00 [3.82, 6.54] vs 4.67 [3.55, 5.90], P = 0.5; interquartile range (IQR) of difference: 18.91 [17.43, 20.48] vs 20.11 [18.46, 21.80], P = 0.05; P30: 76.6% [73.7%, 79.5%] vs 75.8% [72.9%, 78.6%], P = 0.4), but the 9-variable ANN model significantly improve bias and P30 accuracy (mean of difference: 2.77 [1.82, 4.10], P = 0.007; IQR: 19.33 [17.77, 21.17], P = 0.3; P30: 80.0% [77.4%, 82.7%], P < 0.001).
Conclusions
It is suggested that using complicated non-linear models like ANN could fully utilize the predictive ability of the independent variables, and then finally achieve a superior GFR estimation model.
Funder
National Key R&D Plan
National Natural Science Foundation of China
Third Affiliated Hospital of Sun Yat-Sen University, Clinical Research Program
Key R&D Program of Guangdong Science and Technology Department
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine