Automatic segmentation of the gross target volume in radiotherapy for lung cancer using transresSEUnet 2.5D Network

Author:

Xie Hui,Chen Zijie,Deng Jincheng,Zhang Jianfang,Duan Hanping,Li Qing

Abstract

Abstract Objective This paper intends to propose a method of using TransResSEUnet2.5D network for accurate automatic segmentation of the Gross Target Volume (GTV) in Radiotherapy for lung cancer. Methods A total of 11,370 computed tomograms (CT), deriving from 137 cases, of lung cancer patients under radiotherapy developed by radiotherapists were used as the training set; 1642 CT images in 20 cases were used as the validation set, and 1685 CT images in 20 cases were used as the test set. The proposed network was tuned and trained to obtain the best segmentation model and its performance was measured by the Dice Similarity Coefficient (DSC) and with 95% Hausdorff distance (HD95). Lastly, as to demonstrate the accuracy of the automatic segmentation of the network proposed in this study, all possible mirrors of the input images were put into Unet2D, Unet2.5D, Unet3D, ResSEUnet3D, ResSEUnet2.5D, and TransResUnet2.5D, and their respective segmentation performances were compared and assessed. Results The segmentation results of the test set showed that TransResSEUnet2.5D performed the best in the DSC (84.08 ± 0.04) %, HD95 (8.11 ± 3.43) mm and time (6.50 ± 1.31) s metrics compared to the other three networks. Conclusions The TransResSEUnet 2.5D proposed in this study can automatically segment the GTV of radiotherapy for lung cancer patients with more accuracy.

Funder

Science and Technology Funding Project of Hunan Province, China

Science and Technology Funding Project of Chenzhou City, Hunan Province China

Key Laboratory of Tumor Precision Medicine, Hunan colleges and Universities Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3