Abstract
Abstract
Background
The precise prediction of epidermal growth factor receptor (EGFR) mutation status and gross tumor volume (GTV) segmentation are crucial goals in computer-aided lung adenocarcinoma brain metastasis diagnosis. However, these two tasks present continuous difficulties due to the nonuniform intensity distributions, ambiguous boundaries, and variable shapes of brain metastasis (BM) in MR images.The existing approaches for tackling these challenges mainly rely on single-task algorithms, which overlook the interdependence between these two tasks.
Methods
To comprehensively address these challenges, we propose a multi-task deep learning model that simultaneously enables GTV segmentation and EGFR subtype classification. Specifically, a multi-scale self-attention encoder that consists of a convolutional self-attention module is designed to extract the shared spatial and global information for a GTV segmentation decoder and an EGFR genotype classifier. Then, a hybrid CNN-Transformer classifier consisting of a convolutional block and a Transformer block is designed to combine the global and local information. Furthermore, the task correlation and heterogeneity issues are solved with a multi-task loss function, aiming to balance the above two tasks by incorporating segmentation and classification loss functions with learnable weights.
Results
The experimental results demonstrate that our proposed model achieves excellent performance, surpassing that of single-task learning approaches. Our proposed model achieves a mean Dice score of 0.89 for GTV segmentation and an EGFR genotyping accuracy of 0.88 on an internal testing set, and attains an accuracy of 0.81 in the EGFR genotype prediction task and an average Dice score of 0.85 in the GTV segmentation task on the external testing set. This shows that our proposed method has outstanding performance and generalization.
Conclusion
With the introduction of an efficient feature extraction module, a hybrid CNN-Transformer classifier, and a multi-task loss function, the proposed multi-task deep learning network significantly enhances the performance achieved in both GTV segmentation and EGFR genotyping tasks. Thus, the model can serve as a noninvasive tool for facilitating clinical treatment.
Funder
National Nature Science Foundation of China
Nature Science Foundation of Shandong Province
Taishan Scholar Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine