11β-HSD1 participates in epileptogenesis and the associated cognitive impairment by inhibiting apoptosis in mice

Author:

Li Xueying,Qiu Wanhua,Deng Lu,Lin Jingjing,Huang Wenting,Xu Yuchen,Zhang Mulan,Jones Nigel C.,Lin Runxuan,Xu Huiqin,Lin Li,Li Peijun,Wang Xinshi

Abstract

Abstract Background Glucocorticoid signalling is closely related to both epilepsy and associated cognitive impairment, possibly through mechanisms involving neuronal apoptosis. As a critical enzyme for glucocorticoid action, the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in epileptogenesis and associated cognitive impairment has not previously been studied. Methods We first investigated the expression of 11β-HSD1 in the pentylenetetrazole (PTZ) kindling mouse model of epilepsy. We then observed the effect of overexpressing 11β-HSD1 on the excitability of primary cultured neurons in vitro using whole-cell patch clamp recordings. Further, we assessed the effects of adeno-associated virus (AAV)-induced hippocampal 11β-HSD1 knockdown in the PTZ model, conducting behavioural observations of seizures, assessment of spatial learning and memory using the Morris water maze, and biochemical and histopathological analyses. Results We found that 11β-HSD1 was primarily expressed in neurons but not astrocytes, and its expression was significantly (p < 0.05) increased in the hippocampus of PTZ epilepsy mice compared to sham controls. Whole-cell patch clamp recordings showed that overexpression of 11β-HSD1 significantly decreased the threshold voltage while increasing the frequency of action potential firing in cultured hippocampal neurons. Hippocampal knockdown of 11β-HSD1 significantly reduced the severity score of PTZ seizures and increased the latent period required to reach the fully kindled state compared to control knockdown. Knockdown of 11β-HSD1 also significantly mitigated the impairment of spatial learning and memory, attenuated hippocampal neuronal damage and increased the ratio of Bcl-2/Bax, while decreasing the expression of cleaved caspase-3. Conclusions 11β-HSD1 participates in the pathogenesis of both epilepsy and the associated cognitive impairment by elevating neuronal excitability and contributing to apoptosis and subsequent hippocampal neuronal damage. Inhibition of 11β-HSD1, therefore, represents a promising strategy to treat epilepsy and cognitive comorbidity.

Funder

Zhejiang Medical Health Science and Technology Project

Science and Technology Plan Project of Wenzhou, China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3