Targeted metabolomics identifies accurate CSF metabolite biomarkers for the differentiation between COVID-19 with neurological involvement and CNS infections with neurotropic viral pathogens

Author:

Neu Frieder,Nay Sandra,Schuchardt Sven,Klawonn Frank,Skripuletz Thomas,Suehs Kurt-Wolfram,Pessler FrankORCID

Abstract

Abstract Background COVID-19 is primarily considered a respiratory tract infection, but it can also affect the central nervous system (CNS), which can result in long-term sequelae. In contrast to CNS infections by classic neurotropic viruses, SARS-CoV-2 is usually not detected in cerebrospinal fluid (CSF) from patients with COVID-19 with neurological involvement (neuro-COVID), suggesting fundamental differences in pathogenesis. Methods To assess differences in CNS metabolism in neuro-COVID compared to CNS infections with classic neurotropic viruses, we applied a targeted metabolomic analysis of 630 metabolites to CSF from patients with (i) COVID-19 with neurological involvement [n = 16, comprising acute (n = 13) and post-COVID-19 (n = 3)], (ii) viral meningitis, encephalitis, or myelitis (n = 10) due to herpes simplex virus (n = 2), varicella zoster virus (n = 6), enterovirus (n = 1) and tick-borne encephalitis virus (n = 1), and (iii) aseptic neuroinflammation (meningitis, encephalitis, or myelitis) of unknown etiology (n = 21) as additional disease controls. Results Standard CSF parameters indicated absent or low neuroinflammation in neuro-COVID. Indeed, CSF cell count was low in neuro-COVID (median 1 cell/µL, range 0–12) and discriminated it accurately from viral CNS infections (AUC = 0.99) and aseptic neuroinflammation (AUC = 0.98). 32 CSF metabolites passed quality assessment and were included in the analysis. Concentrations of differentially abundant (fold change ≥|1.5|, FDR ≤ 0.05) metabolites were both higher (9 and 5 metabolites) and lower (2 metabolites) in neuro-COVID than in the other two groups. Concentrations of citrulline, ceramide (d18:1/18:0), and methionine were most significantly elevated in neuro-COVID. Remarkably, triglyceride TG(20:1_32:3) was much lower (mean fold change = 0.09 and 0.11) in neuro-COVID than in all viral CNS infections and most aseptic neuroinflammation samples, identifying it as highly accurate biomarker with AUC = 1 and 0.93, respectively. Across all samples, TG(20:1_32:3) concentration correlated only moderately with CSF cell count (ρ = 0.65), protein concentration (ρ = 0.64), and Q-albumin (ρ = 0.48), suggesting that its low levels in neuro-COVID CSF are only partially explained by less pronounced neuroinflammation. Conclusions The results suggest that CNS metabolite responses in neuro-COVID differ fundamentally from viral CNS infections and aseptic neuroinflammation and may be used to discover accurate diagnostic biomarkers in CSF and to gain insights into differences in pathophysiology between neuro-COVID, viral CNS infections and aseptic neuroinflammation.

Funder

Helmholtz Association

Medizinische Hochschule Hannover

Helmholtz-Zentrum für Infektionsforschung GmbH (HZI)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3