Atox1 regulates macrophage polarization in intestinal inflammation via ROS-NLRP3 inflammasome pathway

Author:

Chen MingXian,Chen Yu,Fu Rui,Liu SaiYue,Li HaiXia,Shen TangBiao

Abstract

Abstract Background Inflammation and oxidative stress play an important role in the pathophysiology of inflammatory bowel disease (IBD). This study aimed to explore the effects of copper chaperone Antioxidant-1 (Atox1) on macrophages in a mouse model of intestinal inflammation. Methods A mouse model of TNBS-induced colitis was established and verified using the disease activity index. Atox1 conditional knockout mice were applied. The proportion of macrophages in colonic lamina propria mononuclear cells and ROS production were analyzed using flow cytometry. Inflammatory cytokines were measured using ELISA. Expression of macrophage M1/M2 polarization markers, p47phox, NLRP3, and Caspase-1 p20 was measured using quantitative RT-PCR and Western blotting. Results Atox1 expression was up-regulated in colon tissues of TNBS-induced colitis mice. Macrophages isolated from TNBS-induced colitis mice showed M1 polarization and nuclear translocation of Atox1. Inhibiting copper chaperone activity decreased p47phox, ROS production, and M1 polarization induced by CuCl2 in macrophages. TNBS induced up-regulation of inflammatory cytokines, M1 polarization markers, and p47phox expression in mice, an effect which was preempted by Atox1 knockout. Inflammatory cytokines and expression of M1 polarization markers, p47phox, NLRP3, Caspase-1 p20 were also increased in macrophages isolated from TNBS-induced colitis mice. These changes were alleviated in mice with Atox1 knockout. The effects of Atox1 on macrophage polarization were mediated via the ROS-NLRP3 inflammasome pathway. Conclusion Atox1 plays a pro-inflammatory role, promotes M1 polarization of macrophages, and increases the concentrations of pro-inflammatory cytokines in intestinal tissue by regulating the ROS-NLRP3 inflammasome pathway. Atox1 is a potential therapeutic target in IBD.

Funder

Zhejiang Provincial Natural Science Foundation of China

Zhejiang Province 551 Health Talent Training Project

State Administration of Traditional Chinese Medicine Science and Technology Department-Zhejiang Provincial Administration of Traditional Chinese Medicine Co-construction of Key laboratory

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3