iRGD-modified memory-like NK cells exhibit potent responses to hepatocellular carcinoma

Author:

Dong Yanbing,Huang Ying,Zhang Zhe,Chen Aoxing,Li Lin,Tian Manman,Shen Jie,Shao Jie

Abstract

Abstract Background Cytokine-induced memory-like natural killer (CIML NK) cells have been found to possess potent antitumor responses and induce complete remissions in patients with leukemia. However, the poor infiltration of transferred NK cells is a major obstacle in developing adoptive cell immunotherapy for solid tumors. In our study, we explored the potential of using the tumor-penetrating peptide iRGD to deliver activated CIML NK cells deep into tumor tissues. Methods After being briefly stimulated with interleukin-12 (IL-12), IL-15, and IL-18, CIML NK cells were assessed for their phenotype and function with flow cytometry. The penetrating and killing capability of iRGD-modified CIML NK cells in tumor spheroids was revealed by confocal microscopy. The anti-tumor efficacy of these modified CIML NK cells was tested in hepatocellular carcinoma (HCC) xenograft mouse models. Results Treating NK cells with cytokines led to a substantial activation, which was evidenced by the upregulation of CD25 and CD137. After a resting period of six days, CIML NK cells were still able to display strong activation when targeting HepG2 and SK-Hep-1 HCC cell lines. Additionally, CIML NK cells produced increased amounts of cytokines (interferon-gamma and tumor necrosis factor alpha) and exhibited heightened cytotoxicity towards HCC cell lines. The iRGD modification enabled CIML NK cells to infiltrate multicellular spheroids (MCSs) and, consequently, to induce cytotoxicity against the target cancer cells. Moreover, the CIML NK cells modified with iRGD significantly decreased tumor growth in a HCC xenograft mouse model. Conclusion Our findings demonstrate that CIML NK cells possess augmented potency and durability against HCC cell lines in vitro. Additionally, we have seen that the incorporation of iRGD to CIML NK cells facilitates enhanced infiltration and targeted destruction of MCSs. Moreover, the application of iRGD-modified CIML NK cells reveal remarkable anti-tumor efficacy against HCC in vivo.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3