Computed tomography-detected extramural venous invasion-related gene signature: a potential negative biomarker of immune checkpoint inhibitor treatment in patients with gastric cancer

Author:

Yang Hao,Gou Xinyi,Feng Caizhen,Zhang Yinli,Chai Fan,Hong Nan,Ye Yingjiang,Wang Yi,Gao Bo,Cheng Jin

Abstract

Abstract Background To investigate the association between computed tomography (CT)-detected extramural venous invasion (EMVI)-related genes and immunotherapy resistance and immune escape in patients with gastric cancer (GC). Methods Thirteen patients with pathologically proven locally advanced GC who had undergone preoperative abdominal contrast-enhanced CT and radical resection surgery were included in this study. Transcriptome sequencing was multidetector performed on the cancerous tissue obtained during surgery, and EMVI-related genes (P value for association < 0.001) were selected. A single-sample gene set enrichment analysis algorithm was also used to divide all GC samples (n = 377) in The Cancer Genome Atlas (TCGA) database into high and low EMVI-immune related groups based on immune-related differential genes. Cluster analysis was used to classify EMVI-immune-related genotypes, and survival among patients was validated in TCGA and Gene Expression Omnibus (GEO) cohorts. The EMVI scores were calculated using principal component analysis (PCA), and GC samples were divided into high and low EMVI score groups. Microsatellite instability (MSI) status, tumor mutation burden (TMB), response rate to immune checkpoint inhibitors (ICIs), immune escape were compared between the high and low EMVI score groups. Hub gene of the model in pan-cancer analysis was also performed. Results There were 17 EMVI-immune-related genes used for cluster analysis. PCA identified 8 genes (PCH17, SEMA6B, GJA4, CD34, ACVRL1, SOX17, CXCL12, DYSF) that were used to calculate EMVI scores. High EMVI score groups had lower MSI, TMB and response rate of ICIs, status but higher immune escape status. Among the 8 genes used for EMVI scores, CXCL12 and SOX17 were at the core of the protein–protein interaction (PPI) network and had a higher priority in pan-cancer analysis. Immunohistochemical analysis showed that the expression of CXCL12 and SOX17 was significantly higher in CT-detected EMVI-positive samples than in EMVI-negative samples (P < 0.0001). Conclusion A CT-detected EMVI gene signature could be a potential negative biomarker for ICIs treatment, as the signature is negatively correlated with TMB, and MSI, resulting in poorer prognosis.

Funder

the National Natural Science Foundation of China

Peking University People’s Hospital Research and Development Funds

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3