Author:
Gan Wenhua,Song Wenwen,Gao Yujuan,Zheng Xuexue,Wang Fengjuan,Zhang Zirui,Zen Ke,Liang Hongwei,Yan Xin
Abstract
Abstract
Background
Idiopathic Pulmonary Fibrosis (IPF) is a type of chronic interstitial pneumonia, often fatal, with elusive causes and a bleak prognosis. Its treatment options are limited and largely ineffective. Early detection and precise diagnosis are pivotal in managing the disease effectively and enhancing patient survival rates. Recently, the quest for trustworthy biomarkers for IPF has gained momentum. Notably, emerging studies indicate that circular RNAs (circRNAs) found in exosomes may hold significant potential as valuable diagnostic markers.
Methods
In this study, we initially explored the expression profile of circRNAs in exosomes sourced from the blood of IPF patients and healthy volunteers, employing a human circRNA microarray. We then utilized RT-qPCR to corroborate the dysregulated circRNAs identified by the microarray during the training phase. Next, the circRNAs that displayed a significant increase during the training phase were selected for further validation in a larger cohort encompassing 113 IPF patients and 76 healthy volunteers. Ultimately, the expression level and function of hsa_circ_0044226 were substantiated through a series of in vivo and in vitro experiments.
Results
Utilizing a human circRNA microarray, we identified 11 dysregulated circRNAs in the exosomes derived from the blood of IPF patients and control volunteers. Subsequent RT-qPCR analysis revealed significant increases in three circRNAs (hsa_circ_0044226, hsa_circ_0004099, hsa_circ_0008898) within the IPF patients. Notably, hsa_circ_0044226 was markedly elevated in patients experiencing acute exacerbation of IPF (AE-IPF) compared to those with stable IPF (S-IPF). Additionally, an upregulation of hsa_circ_0044226 was observed in the blood exosomes derived from a bleomycin-induced IPF mouse model.
Conclusion
The expression levels of hsa_circ_0044226, hsa_circ_0004099, and hsa_circ_0008898 in plasma exosomes introduce a new paradigm of biomarkers for the diagnosis and progression of IPF.
Funder
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献