Combining serum inflammation indexes at baseline and post treatment could predict pathological efficacy to anti‑PD‑1 combined with neoadjuvant chemotherapy in esophageal squamous cell carcinoma

Author:

Zhang Xinke,Gari A.,Li Mei,Chen Jierong,Qu Chunhua,Zhang Lihong,Chen JieweiORCID

Abstract

Abstract Background The neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) have been used to predict therapeutic response in different tumors. However, no assessments of their usefulness have been performed in esophageal squamous cell carcinoma (ESCC) patients receiving anti‑PD‑1 combined with neoadjuvant chemotherapy. Methods The respective data of 64 ESCC patients receiving anti‑PD‑1 combined with neoadjuvant chemotherapy were analyzed. Whether NLR, LMR, PLR, and SII at baseline and post-treatment might predict pathological response to anti‑PD‑1 plus neoadjuvant chemotherapy, and cutoff values of these parameters were all determined by ROC curve analysis. Results NLR (cutoff = 3.173, AUC = 0.644, 95% CI 0.500–0.788, P = 0.124, sensitivity = 1.000, specificity = 0.373), LMR (cutoff = 1.622, AUC = 0.631, 95% CI 0.477–0.784, P = 0.161, sensitivity = 0.917, specificity = 0.137), PLR (cutoff = 71.108, AUC = 0.712, 95% CI 0.575–0.849, P = 0.023, sensitivity = 1.000, specificity = 0.059), and SII at baseline (cutoff = 559.266, AUC = 0.681, 95% CI 0.533–0.830, P = 0.052, sensitivity = 0.373, specificity = 1.000) seemed to be a useful predictor for distinguishing responders from non-responders. Combining NLR with SII at baseline (AUC = 0.729, 95% CI 0.600–0.858, P = 0.014, sensitivity = 0.917, specificity = 0.510), LMR and SII at baseline (AUC = 0.735, 95% CI 0.609–0.861, P = 0.012, sensitivity = 1.000 specificity = 0.471), PLR and SII at baseline (AUC = 0.716, 95% CI 0.584–0.847, P = 0.021, sensitivity = 1.000 specificity = 0.431), and LMR and PLR at post-treatment in the third period (AUC = 0.761, 95% CI 0.605–0.917, P = 0.010, sensitivity = 0.800, specificity = 0.696) might slightly increase the prediction ability to determine patients who have response or no response. Finally, combining LMR at baseline, SII at post-treatment in the second period with PLR at post-treatment in the third period could be considered a better predictor for discriminating responders and non-responders than single or dual biomarkers (AUC = 0.879, 95% CI 0.788–0.969, P = 0.0001, sensitivity = 0.909, specificity = 0.800). Conclusions The models we constructed allowed for the accurate and efficient stratification of ESCC patients receiving anti-PD-1 plus chemotherapy and are easily applicable for clinical practice at no additional cost.

Funder

Youth Foundation of National Natural Science Foundation of China

Guangdong Esophageal Cancer Institute Science and Technology Program Project

Youth Innovation Promotion Program of Sun Yat-sen University Cancer Center

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3