The enrichment of Fanconi anemia/homologous recombination pathway aberrations in ATM/ATR-mutated NSCLC was accompanied by unique molecular features and poor prognosis

Author:

Wei Wei,Shi Fangfang,Xu Yang,Jiao Yang,Zhang Ying,Ou Qiuxiang,Wu Xue,Yang Lingyi,Lai Jinhuo

Abstract

Abstract Background ATM and ATR are two critical factors to regulate DNA damage response (DDR), and their mutations were frequently observed in different types of cancer, including non-small cell lung cancer (NSCLC). Given that the majority of identified ATM/ATR mutations were variants of uncertain significance, the clinical/molecular features of pathogenic ATM/ATR aberrations have not been comprehensively investigated in NSCLC. Methods Next-generation sequencing (NGS) analyses were conducted to investigate the molecular features in 191 NSCLC patients who harbored pathogenic/likely pathogenic ATM/ATR mutations and 308 NSCLC patients who did not have any types of ATM/ATR variants. The results were validated using an external cohort of 2727 NSCLC patients (including 48 with ATM/ATR pathogenic mutations). Results Most pathogenic ATM/ATR genetic alterations were frameshift and nonsense mutations that disrupt critical domains of the two proteins. ATM/ATR-mutated patients had significantly higher tumor mutational burdens (TMB; P < 0.001) and microsatellite instabilities (MSI; P = 0.023), but not chromosomal instabilities, than those without any ATM/ATR variations. In particular, KRAS mutations were significantly enriched in ATM-mutated patients (P = 0.014), whereas BRCA2 mutations (P = 0.014), TP53 mutations (P = 0.014), and ZNF703 amplification (P = 0.008) were enriched in ATR-mutated patients. Notably, patients with ATM/ATR pathogenic genetic alterations were likely to be accompanied by mutations in Fanconi anemia (FA) and homologous recombination (HR) pathways, which were confirmed using both the study (P < 0.001) and validation (P < 0.001) cohorts. Furthermore, the co-occurrence of FA/HR aberrations could contribute to increased TMB and MSI, and patients with both ATM/ATR and FA/HR mutations tended to have worse overall survival. Conclusions Our results demonstrated the unique clinical and molecular features of pathogenic ATM/ATR mutations in NSCLC, which helps better understand the cancerous involvement of these DDR regulators, as well as directing targeted therapies and/or immunotherapies to treat ATM/ATR-mutated NSCLC, especially those with co-existing FA/HR aberrations.

Funder

National Natural Science Foundation of China

Scientific research foundation of Nanjing Health Commission

Natural Science Foundation of Jiangsu Province

Jiangsu Planned Projects for Postdoctoral Research Funds

Fujian Science and Technology Innovation Joint Fund Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3