Abstract
Abstract
Background
Acute gouty arthritis is inflammatory joint arthritis. Gouty arthritis (GA) involves multiple pathological processes. Deposition of joints by monosodium urate (MSU) crystals has been shown to play a critical role in the injury process. Due to the different effects of MSU stimulation on the joints, the exact changes in the synovial fluid are unknown. We want to explore the changes in proteins and metabolites in the joints of gouty arthritis. Regulating various functional substances in the joint can reduce inflammation and pain symptoms.
Methods
10 patients with gouty knee arthritis and 10 normal controls were selected from clinical, surgical cases. The biological function of the metabolome was assessed by co-expression network analysis. A molecular network based on metabolomic and proteomic data was constructed to study critical molecules. The fundamental molecular changes in the relevant pathways were then verified by western blot.
Results
Proteomic analysis showed that the expressions of proteases Cathepsin B, Cathepsin D, Cathepsin G, and Cathepsin S in synovial fluid patients with gouty arthritis were significantly increased. Enrichment analysis showed a positive correlation between lysosomal and clinical inflammatory cell shape changes. Untargeted metabolomic analysis revealed that lipids and lipoids accumulate, inhibit autophagic flux, and modulate inflammation and immunity in gouty arthritis patients. It was determined that the accumulation of lipid substances such as phospholipase A2 led to the imbalanced state of the autophagy-lysosome complex, and the differentially expressed metabolites of Stearoylcarnitine, Tetradecanoylcarnitine, Palmitoylcarnitine were identified (|log2 fold change|> 1.5, adjusted P value < 0.05 and variable importance in prediction (VIP) > 1.5). The autophagy-lysosomal pathway was found to be associated with gouty knee arthritis. Essential molecular alterations of multi-omics networks in gouty knee arthritis patients compared with normal controls involve acute inflammatory response, exosomes, immune responses, lysosomes, linoleic acid metabolism, and synthesis.
Conclusions
Comprehensive analysis of proteomic and untargeted metabolomics revealed protein and characteristic metabolite alterations in gouty arthritis, it mainly involves lipids and lipid like molecules, phospholipase A2 and autophagic lysosomes. This study describes the pathological characteristics, pathways, potential predictors and treatment goals of gouty knee arthritis.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
The Innovative Spark Project of Sichuan University
Sichuan Science and Technology Program
Chengdu Science and Technology Bureau Project
1.3.5 Project for Disciplines of Excellence of West China Hospital Sichuan University
1·3·5 project for disciplines of excellence–Clinical Research Incubation Project, West China Hospital, Sichuan University
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献