An artificial intelligence model for the pathological diagnosis of invasion depth and histologic grade in bladder cancer

Author:

Pan Jiexin,Hong Guibin,Zeng Hong,Liao Chengxiao,Li Huarun,Yao Yuhui,Gan Qinghua,Wang Yun,Wu Shaoxu,Lin Tianxin

Abstract

Abstract Background Accurate pathological diagnosis of invasion depth and histologic grade is key for clinical management in patients with bladder cancer (BCa), but it is labour-intensive, experience-dependent and subject to interobserver variability. Here, we aimed to develop a pathological artificial intelligence diagnostic model (PAIDM) for BCa diagnosis. Methods A total of 854 whole slide images (WSIs) from 692 patients were included and divided into training and validation sets. The PAIDM was developed using the training set based on the deep learning algorithm ScanNet, and the performance was verified at the patch level in validation set 1 and at the WSI level in validation set 2. An independent validation cohort (validation set 3) was employed to compare the PAIDM and pathologists. Model performance was evaluated using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value and negative predictive value. Results The AUCs of the PAIDM were 0.878 (95% CI 0.875–0.881) at the patch level in validation set 1 and 0.870 (95% CI 0.805–0.923) at the WSI level in validation set 2. In comparing the PAIDM and pathologists, the PAIDM achieved an AUC of 0.847 (95% CI 0.779–0.905), which was non-inferior to the average diagnostic level of pathologists. There was high consistency between the model-predicted and manually annotated areas, improving the PAIDM’s interpretability. Conclusions We reported an artificial intelligence-based diagnostic model for BCa that performed well in identifying invasion depth and histologic grade. Importantly, the PAIDM performed admirably in patch-level recognition, with a promising application for transurethral resection specimens.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3