Prediction model for EBV infection following HLA haploidentical matched hematopoietic stem cell transplantation

Author:

Cao Xun-Hong,Fan Ze-Ying,Chang Ying-Jun,Xu Lan-Ping,Zhang Xiao-Hui,Huang Xiao-Jun,Zhao Xiang-YuORCID

Abstract

Abstract Aims Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for hematological malignancies. However, viral infections, particularly EBV infection, frequently occur following allo-HSCT and can result in multi-tissue and organ damage. Due to the lack of effective antiviral drugs, these infections can even progress to post-transplant lymphoproliferative disorders (PTLD), thereby impacting the prognosis. In light of this, our objective is to develop a prediction model for EBV infection following allo-HSCT. Methods A total of 466 patients who underwent haploidentical hematopoietic stem cell transplantation (haplo-HSCT) between September 2019 and December 2020 were included in this study. The patients were divided into a development cohort and a validation cohort based on the timing of their transplantation. Our aim was to develop and validate a grading scale using these cohorts to predict the risk of EBV infection within the first year after haplo-HSCT. Additionally, single-cell RNA sequencing (sc-RNAseq) data from the bone marrow of healthy donors were utilized to assess the impact of age on immune cells and viral infection. Results In the multivariate logistic regression model, four predictors were retained: donor age, female-to-male transplant, graft MNC (mononuclear cell) dose, and CD8 dose. Based on these predictors, an EBV reactivation predicting score system was constructed. The scoring system demonstrated good calibration in both the derivation and validation cohorts, as confirmed by the Hosmer–Lemeshow test (p > 0.05). The scoring system also exhibited favorable discriminative ability, as indicated by the C statistics of 0.72 in the derivation cohort and 0.60 in the validation cohort. Furthermore, the clinical efficacy of the scoring system was evaluated using Kaplan–Meier curves based on risk ratings. The results showed significant differences in EBV reactivation rates between different risk groups, with p-values less than 0.001 in both the derivation and validation cohorts, indicating robust clinical utility. The analysis of sc-RNAseq data from the bone marrow of healthy donors revealed that older age had a profound impact on the quantity and quality of immune subsets. Functional enrichment analysis highlighted that older age was associated with a higher risk of infection. Specifically, CD8 + T cells from older individuals showed enrichment in the pathway of “viral carcinogenesis”, while older CD14 + monocytes exhibited enrichment in the pathway of "regulation of viral entry into host cell." These findings suggest that older age may contribute to an increased susceptibility to viral infections, as evidenced by the altered immune profiles observed in the sc-RNAseq data. Conclusion Overall, these results demonstrate the development and validation of an effective scoring system for predicting EBV reactivation after haplo-HSCT, and provide insights into the impact of age on immune subsets and viral infection susceptibility based on sc-RNAseq analysis of healthy donors' bone marrow.

Funder

National Natural Science Foundation of China

Science, Technology& Innovation Project of Xiongan New area

Peking University People’s Hospital Research and Development Funds

Beijing Nova Program

Beijing Science and Technology Plan Project

Beijing Life Oasis Public Service Center

CSH Young Scholars and 3SBio Pharmaceutical joint research project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3