Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification

Author:

Duan Xin,Ding Xinnan,Zhao Zhuanzhe

Abstract

Abstract Background Characterizing cancer molecular subtypes is crucial for improving prognosis and individualized treatment. Integrative analysis of multi-omics data has become an important approach for disease subtyping, yielding better understanding of the complex biology. Current multi-omics integration tools and methods for cancer subtyping often suffer challenges of high computational efficiency as well as the problem of weight assignment on data types. Results Here, we present an efficient multi-omics integration via weighted affinity and self-diffusion (MOSD) to dissect cancer heterogeneity. MOSD first construct local scaling affinity on each data type and then integrate all affinities by weighted linear combination, followed by the self-diffusion to further improve the patients’ similarities for the downstream clustering analysis. To demonstrate the effectiveness and usefulness for cancer subtyping, we apply MOSD across ten cancer types with three measurements (Gene expression, DNA methylation, miRNA). Conclusions Our approach exhibits more significant differences in patient survival and computationally efficient benchmarking against several state-of-art integration methods and the identified molecular subtypes reveal strongly biological interpretability. The code as well as its implementation are available in GitHub: https://github.com/DXCODEE/MOSD.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3