Author:
Chen Xing,Lin Shan,Lin Ying,Wu Songsong,Zhuo Minling,Zhang Ailong,Zheng Junjie,You Zhenhui
Abstract
Abstract
Background
Papillary thyroid carcinoma (PTC) is one of most prevalent malignant endocrine neoplasms, and it is associated with a high frequency of BRAF gene mutations, which lead to lymphatic metastasis and distant metastasis that promote tumor progression. The molecular mechanism of PTC and the role of BRAF mutation in PTC progression and development need to be further elucidated.
Methods
In this study, a comprehensive bioinformatics analysis was performed to identify the differentially expressed genes and signaling pathways in thyroid cancer patients carrying mutant BRAF. Then, we confirmed the prognostic role of WT1 in thyroid cancer patients. Immunohistochemistry was performed to measure the expression profile of WT1 in PTC tissue. Lentivirus shWT1 was transfected into BRAFV600E (mutant) PTC cells to stably inhibit WT1 expression. CCK-8, EdU, immunofluorescence, colony formation, cell migration, cell wound healing, apoptosis and autophagy assays were performed to assess the biological functions of WT1 in BRAFV600E PTC cells. RNA sequencing, immunohistochemistry and immunoblotting were performed to explore the molecular mechanism of WT1 in BRAFV600E PTC cells.
Results
The results confirmed that “epithelial cell proliferation”, “apoptosis” and “selective autophagy” were closely associated with this BRAF mutant in these thyroid cancer patients. Knocking down BRAF-activated WT1 effectively inhibited the proliferation and migration of BRAFV600E PTC cells. Silencing WT1 significantly inhibited autophagy and promoted the apoptosis of BRAFV600E PTC cells. Mechanistic investigations showed that silencing WT1 expression remarkably suppressed the AKT/mTOR and ERK/P65 signaling pathways in BRAFV600E PTC cells.
Conclusion
All these results indicate that WT1 is a promising prognostic biomarker and facilitates PTC progression and development of cells carrying the BRAFV600E mutation.
Funder
natural science foundation of fujian province, china
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference44 articles.
1. Sun W, Qin Y, Wang Z, Dong W, He L, Zhang T, Zhang H. The NEAT1_2/miR-491 axis modulates papillary thyroid cancer invasion and metastasis through TGM2/NFκb/FN1 signaling. Front Oncol. 2021;11: 610547.
2. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.
3. Luo Q, Guo F, Fu Q, Sui G. hsa_circ_0001018 promotes papillary thyroid cancer by facilitating cell survival, invasion, G(1)/S cell cycle progression, and repressing cell apoptosis via crosstalk with miR-338-3p and SOX4. Mol Ther Nucleic Acids. 2021;24:591–609.
4. Tang B, Zhu J, Li J, Fan K, Gao Y, Cheng S, Kong C, Zheng L, Wu F, Weng Q, et al. The ferroptosis and iron-metabolism signature robustly predicts clinical diagnosis, prognosis and immune microenvironment for hepatocellular carcinoma. Cell Commun Signal. 2020;18(1):174.
5. Li B, Huang Z, Yu W, Liu S, Zhang J, Wang Q, Wu L, Kou F, Yang L. Molecular subtypes based on CNVs related gene signatures identify candidate prognostic biomarkers in lung adenocarcinoma. Neoplasia. 2021;23(7):704–17.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献