Integrative multi-omics analysis identifies genetically supported druggable targets and immune cell specificity for myasthenia gravis

Author:

Li Jiao,Wang Fei,Li Zhen,Feng Jingjing,Men Yi,Han Jinming,Xia Jiangwei,Zhang Chen,Han Yilai,Chen Teng,Zhao Yinan,Zhou Sirui,Da Yuwei,Chai Guoliang,Hao JunweiORCID

Abstract

Abstract Background Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted for treatment of MG. Methods By employing an analytical framework that combines Mendelian randomization (MR) and colocalization analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-cell-specific eQTLs and MG risk. Results We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence of colocalization, with a posterior probability of 0.854, linking CTSH expression in TH2 cells and MG risk. Conclusions This study provides crucial insights into the genetic and molecular factors associated with MG susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research is imperative to validate these targets and evaluate their feasibility for drug development.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Pilot Project for Public Welfare Development and Reform of Beijing-affiliated Medical Research Institutes

Project of Construction and Support for high-level Innovative Teams of Beijing Municipal Institutions

China Postdoctoral Science Foundation

Beijing Postdoctoral Science Foundation

Youth Beijing Scholar

Dengfeng Talent Program

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3