Targeting unfolded protein response reverts ER stress and ER Ca2+ homeostasis in cardiomyocytes expressing the pathogenic variant of Lamin A/C R321X

Author:

Pietrafesa Giusy,De Zio Roberta,Scorza Simona Ida,Armentano Maria Francesca,Pepe Martino,Forleo Cinzia,Procino Giuseppe,Gerbino Andrea,Svelto Maria,Carmosino MonicaORCID

Abstract

Abstract Background We previously demonstrated that an Italian family affected by a severe dilated cardiomyopathy (DCM) with history of sudden deaths at young age, carried a mutation in the Lmna gene encoding for a truncated variant of the Lamin A/C protein (LMNA), R321X. When expressed in heterologous systems, such variant accumulates into the endoplasmic reticulum (ER), inducing the activation of the PERK-CHOP pathway of the unfolded protein response (UPR), ER dysfunction and increased rate of apoptosis. The aim of this work was to analyze whether targeting the UPR can be used to revert the ER dysfunction associated with LMNA R321X expression in HL-1 cardiac cells. Methods HL-1 cardiomyocytes stably expressing LMNA R321X were used to assess the ability of 3 different drugs targeting the UPR, salubrinal, guanabenz and empagliflozin to rescue ER stress and dysfunction. In these cells, the state of activation of both the UPR and the pro-apoptotic pathway were analyzed monitoring the expression levels of phospho-PERK, phospho-eIF2α, ATF4, CHOP and PARP-CL. In addition, we measured ER-dependent intracellular Ca2+ dynamics as indicator of proper ER functionality. Results We found that salubrinal and guanabenz increased the expression levels of phospho-eIF2α and downregulated the apoptosis markers CHOP and PARP-CL in LMNA R321X-cardiomyocytes, maintaining the so-called adaptive UPR. These drugs also restored ER ability to handle Ca2+ in these cardiomyocytes. Interestingly, we found that empagliflozin downregulated the apoptosis markers CHOP and PARP-CL shutting down the UPR itself through the inhibition of PERK phosphorylation in LMNA R321X-cardiomyocytes. Furthermore, upon empagliflozin treatment, ER homeostasis, in terms of ER ability to store and release intracellular Ca2+ was also restored in these cardiomyocytes. Conclusions We provided evidence that the different drugs, although interfering with different steps of the UPR, were able to counteract pro-apoptotic processes and to preserve the ER homeostasis in R321X LMNA-cardiomyocytes. Of note, two of the tested drugs, guanabenz and empagliflozin, are already used in the clinical practice, thus providing preclinical evidence for ready-to-use therapies in patients affected by the LMNA R321X associated cardiomyocytes.

Funder

Carmosino19LAMINOPATIE

Carmosino21RIL

DICLIMAX

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3