Abstract
Abstract
Background
Transcatheter arterial embolization (TAE) is one of the first-line treatments for advanced hepatocellular cancer. The pain caused by TAE is a stark complication, which remains to be prevented by biomedical engineering methods.
Methods
Herein, a commercial embolic agent CalliSpheres® bead (CB) was functionally modified with lidocaine (Lid) using an electrostatic self-assembly technique. The products were coded as CB/Lid-n (n = 0, 5, 10, corresponding to the relative content of Lid). The chemical compositions, morphology, drug-loading, and drug-releasing ability of CB/Lid-n were comprehensively investigated. The biocompatibility was determined by hemolysis assay, live/dead cell staining assay, CCK8 assay, immunofluorescence (IHC) staining assay and quantitative real-time PCR. The thermal withdrawal latency (TWL) and edema ratio (ER) were performed to evaluate the analgesia of CB/Lid-n using a plantar inflammation model. A series of histological staining, including immunohistochemistry (IL-6, IL-10, TGF-β and Navi1.7) and TUNEL were conducted to reveal the underlying mechanism of anti-tumor effect of CB/Lid-n on a VX2-tumor bearing model.
Results
Lid was successfully loaded onto the surface of CalliSpheres® bead, and the average diameter of CalliSpheres® bead increased along with the dosage of Lid. CB/Lid-n exhibited desirable drug-loading ratio, drug-embedding ratio, and sustained drug-release capability. CB/Lid-n had mild toxicity towards L929 cells, while triggered no obvious hemolysis. Furthermore, CB/Lid-n could improve the carrageenan-induced inflammation response micro-environment in vivo and in vitro. We found that CB/Lid-10 could selectively kill tumor by blocking blood supply, inhibiting cell proliferation, and promoting cell apoptosis. CB/Lid-10 could also release Lid to relieve post-operative pain, mainly by remodeling the harsh inflammation micro-environment (IME).
Conclusions
In summary, CB/Lid-10 has relatively good biocompatibility and bioactivity, and it can serve as a promising candidate for painless transcatheter arterial embolization.
Funder
the Fellowship of China National Postdoctoral Program for Innovative Talents
the Medical Science and Technology project of Henan Province
the Horizontal Research Program of Zhengzhou University
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献