P21 facilitates macrophage chemotaxis by promoting CCL7 in the lung epithelial cell lines treated with radiation and bleomycin

Author:

Liu Xinglong,Zeng Liang,Zhou Yuchuan,Zhao Xinrui,Zhu Lin,Zhang Jianghong,Pan Yan,Shao ChunlinORCID,Fu Jiamei

Abstract

Abstract Background Interstitial lung diseases (ILDs) can be induced and even exacerbated by radiotherapy in thoracic cancer patients. The roles of immune responses underlying the development of these severe lung injuries are still obscure and need to be investigated. Methods A severe lung damage murine model was established by delivering 16 Gy X-rays to the chest of mice that had been pre-treated with bleomycin (BLM) and thus hold ILDs. Bioinformatic analyses were performed on the GEO datasets of radiation-induced lung injury (RILI) and BLM-induced pulmonary fibrosis (BIPF), and RNA-sequencing data of the severely damaged lung tissues. The screened differentially expressed genes (DEGs) were verified in lung epithelial cell lines by qRT-PCR assay. The injured lung tissue pathology was analyzed with H&E and Masson’s staining, and immunohistochemistry staining. The macrophage chemotaxis and activity promoted by the stressed epithelial cells were determined by using a cell co-culture system. The expressions of p21 in MLE-12 and Beas-2B cells were detected by qRT-PCR, western blot, and immunofluorescence. The concentration of CCL7 in cell supernatant was measured by ELISA assay. In some experiments, Beas-2B cells were transfected with p21-siRNA or CCL7-siRNA before irradiation and/or BLM treatment. Results After the treatment of irradiation and/or BLM, the inflammatory and immune responses, chemokine-mediated signaling pathways were steadily activated in the severely injured lung, and p21 was screened out by the bioinformatic analysis and further verified to be upregulated in both mouse and human lung epithelial cell lines. The expression of P21 was positively correlated with macrophage infiltration in the injured lung tissues. Co-culturing with stressed Beas-2B cells or its conditioned medium containing CCL7 protein, U937 macrophages were actively polarized to M1-phase and their migration ability was obviously increased along with the damage degree of Beas-2B cells. Furthermore, knockdown p21 reduced CCL7 expression in Beas-2B cells and then decreased the chemotaxis of co-cultured macrophages. Conclusions P21 promoted CCL7 release from the severely injured lung epithelial cell lines and contributed to the macrophage chemotaxis in vitro, which provides new insights for better understanding the inflammatory responses in lung injury.

Funder

National Natural Science Foundation of China

Shanghai Pulmonary Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3