Identification of genomic determinants contributing to cytokine release in immunotherapies and human diseases

Author:

Shao Lipei,Pelayo Alejandra,Shi Rongye,Ma Jinxia,Liu Hui,Cai Yihua,Prochazkova Michaela,Somerville Robert P.,Panch Sandhya R.,Shah Nirali N.,Stroncek David F.,Jin Ping

Abstract

Abstract Background Cytokine release syndrome (CRS) is a strong immune system response that can occur as a result of the reaction of a cellular immunotherapy with malignant cells. While the frequency and management of CRS in CAR T-cell therapy has been well documented, there is emerging interest in pre-emptive treatment to reduce CRS severity and improve overall outcomes. Accordingly, identification of genomic determinants that contribute to cytokine release may lead to the development of targeted therapies to prevent or abrogate the severity of CRS. Methods Forty three clinical CD22 CAR T-cell products were collected for RNA extraction. 100 ng of mRNA was used for Nanostring assay analysis which is based on the nCounter platform. Several public datasets were used for validation purposes. Results We found the expression of the PFKFB4 gene and glycolytic pathway activity were upregulated in CD22 CAR T-cells given to patients who developed CRS compared to those who did not experience CRS. Moreover, these results were further validated in cohorts with COVID-19, influenza infections and autoimmune diseases, and in tumor tissues. The findings were similar, except that glycolytic pathway activity was not increased in patients with influenza infections and systemic lupus erythematosus (SLE). Conclusion Our data strongly suggests that PFKFB4 acts as a driving factor in mediating cytokine release in vivo by regulating glycolytic activity. Our results suggest that it would beneficial to develop drugs targeting PFKFB4 and the glycolytic pathway for the treatment of CRS.

Funder

Foundation for the National Institutes of Health

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3