Keratinocyte-derived circulating microRNAs in extracellular vesicles: a novel biomarker of psoriasis severity and potential therapeutic target

Author:

Park Young Joon,Kim Dong Chan,Lee Soo-Jin,Kim Han Seul,Pak Ji Young,Kim Junho,Cheong Jae Youn,Lee Eun-SoORCID

Abstract

Abstract Background Psoriasis is a chronic inflammatory disorder characterized by pathogenic hyperproliferation of keratinocytes and immune dysregulation. Currently, objective evaluation tools reflecting the severity of psoriasis are insufficient. MicroRNAs in extracellular vesicles (EV miRNAs) have been shown to be potential biomarkers for various inflammatory diseases. Our objective was to investigate the possibility of plasma-derived EV miRNAs as a marker for the psoriasis disease severity. Methods EVs were extracted from the plasma of 63 patients with psoriasis and 12 with Behçet’s disease. We performed next-generation sequencing of the plasma-derived EV miRNAs from the psoriasis patients. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to validate the level of EV miRNA expression. In situ hybridization was used to discern the anatomical location of miRNAs. qRT-PCR, western blotting, and cell counting kits (CCKs) were used to investigate IGF-1 signaling in cells transfected with miRNA mimics. Results We identified 19 differentially expressed EV miRNAs and validated the top three up-and down-regulated EV miRNAs. Among these, miR-625-3p was significantly increased in patients with severe psoriasis in both plasma and skin and most accurately distinguished moderate-to-severe psoriasis from mild-to-moderate psoriasis. It was produced and secreted by keratinocytes upon stimulation. We also observed a significant intensification of IGF-1 signalling and increased cell numbers in the miR-625-3p mimic transfected cells. Conclusions We propose keratinocyte-derived EV miR-625-3p as a novel and reliable biomarker for estimating the severity of psoriasis. This biomarker could objectively evaluate the severity of psoriasis in the clinical setting and might serve as a potential therapeutic target. Trial registration None.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3