Abstract
Abstract
Background
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads rapidly and has attracted worldwide attention.
Methods
To improve the forecast accuracy and investigate the spread of SARS-CoV-2, we constructed four mathematical models to numerically estimate the spread of SARS-CoV-2 and the efficacy of eradication strategies.
Results
Using the Susceptible-Exposed-Infected-Removed (SEIR) model, and including measures such as city closures and extended leave policies implemented by the Chinese government that effectively reduced the β value, we estimated that the β value and basic transmission number, R0, of SARS-CoV-2 was 0.476/6.66 in Wuhan, 0.359/5.03 in Korea, and 0.400/5.60 in Italy. Considering medicine and vaccines, an advanced model demonstrated that the emergence of vaccines would greatly slow the spread of the virus. Our model predicted that 100,000 people would become infected assuming that the isolation rate α in Wuhan was 0.30. If quarantine measures were taken from March 10, 2020, and the quarantine rate of α was also 0.3, then the final number of infected people was predicted to be 11,426 in South Korea and 147,142 in Italy.
Conclusions
Our mathematical models indicate that SARS-CoV-2 eradication depends on systematic planning, effective hospital isolation, and SARS-CoV-2 vaccination, and some measures including city closures and leave policies should be implemented to ensure SARS-CoV-2 eradication.
Funder
National Special Research Program of China for Important Infectious Diseases
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference37 articles.
1. Coronavirus latest: WHO officially names disease COVID-19 https://www.msn.com/en-gb/weather/other/coronavirus-outbreak-who-names%20disease-covid-19/vi-BBZTC7q.
2. The Global COVID-19 Big Data Analysis Platform http://www.zq-ai.com/#/fe/xgfybigdata.
3. Wang L-F, Shi Z, Zhang S, Field H, Daszak P, Eaton BT. Review of bats and SARS. Emerg Infect Dis. 2006;12(12):1834–40.
4. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535–8.
5. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–92.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献