Concept and application of the probability of pharmacological success (PoPS) as a decision tool in drug development: a position paper

Author:

Chen ChaoORCID,Zhou Xuan,Lavezzi Silvia Maria,Arshad Usman,Sharma Raman

Abstract

Abstract Background In drug development, few molecules from a large pool of early candidates become successful medicines after demonstrating a favourable benefit-risk ratio. Many decisions are made along the way to continue or stop the development of a molecule. The probability of pharmacological success, or PoPS, is a tool for informing early-stage decisions based on benefit and risk data available at the time. Results The PoPS is the probability that most patients can achieve adequate pharmacology for the intended indication while minimising the number of subjects exposed to safety risk. This probability is usually a function of dose; hence its computation typically requires exposure–response models for pharmacology and safety. The levels of adequate pharmacology and acceptable risk must be specified. The uncertainties in these levels, in the exposure–response relationships, and in relevant translation all need to be identified. Several examples of different indications are used to illustrate how this approach can facilitate molecule progression decisions for preclinical and early clinical development. The examples show that PoPS assessment is an effective mechanism for integrating multi-source data, identifying knowledge gaps, and forcing transparency of assumptions. With its application, translational modelling becomes more meaningful and dose prediction more rigorous. Its successful implementation calls for early planning, sound understanding of the disease-drug system, and cross-discipline collaboration. Furthermore, the PoPS evolves as relevant knowledge grows. Conclusion The PoPS is a powerful evidence-based framework to formally capture multiple uncertainties into a single probability term for assessing benefit-risk ratio. In GSK, it is now expected for governance review at all early-phase decision gates.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3