Genetic and epigenetic regulation of Catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and Fibromyalgia

Author:

Polli AndreaORCID,Hendrix Jolien,Ickmans Kelly,Bakusic Jelena,Ghosh Manosij,Monteyne Dora,Velkeniers Brigitte,Bekaert Bram,Nijs Jo,Godderis Lode

Abstract

Abstract Background Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM. Methods. A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-β). Results. COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-β expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients. Discussion Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.

Funder

ME Research UK

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3