Author:
Fan Wen,Liu Chong,Chen Dacai,Xu Chenjie,Qi Xiuting,Zhang Ailin,Zhu Xuexian,Liu Yujie,Wang Lei,Hao Lanxiang,Liu Wen-Tao,Hu Liang
Abstract
Abstract
Background
Gout pain seriously affects the quality of patients' life. There is still no effective treatment. The inflammatory response is the main mechanism of gout. Here, we found that ozone can reduce the inflammatory reaction in the joints of gouty mice and relieve gout pain, and we further explore its protective mechanism.
Methods
MSU was used to establish the gouty mice model. Nociception was assessed by Von Frey hairs. Cell signaling assays were performed by western blotting and immunohistochemistry. The mouse leukemia cells of monocyte macrophage line RAW264.7 were cultured to investigate the effects of ozone administration on macrophage.
Results
Ozone reduced inflammation, relieved gout pain and improved the paw mean intensity and duty cycle of the gouty mice. Ozone increased the phosphorylation of AMP-activated protein kinase (AMPK), induced suppressor of cytokine signaling 3 (SOCS3) expression and inhibited metallopeptidase 9 (MMP9) expression. In vivo, ozone activated AMPK to induce Gas6 release, and upregulated MerTK/SOCS3 signaling pathway to reduce inflammation in mouse macrophage line RAW264.7. Inhibitors of AMPK and MerTK, respectively abolished the analgesic and anti-inflammatory effects of ozone in vivo and in vitro. Gas6 knockout cancelled the protectively effects of ozone on gout pain and the paw mean intensity and duty cycle of gouty mice. Additionally, the level of Gas6 and protein S in plasma of patients with hyperuricemia was significantly higher than that of healthy contrast group.
Conclusion
Ozone reduces inflammation and alleviates gout pain by activating AMPK to up-regulate Gas6/MerTK/SOCS3 signaling pathway.
Funder
National Natural Science Foundation of China
Natural Science Research of Jiangsu Higher Education Institutions of China
Jiangsu Commission of Health
Jiangsu Elderly Health Research Project
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献