Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: a secondary analysis of a cohort study

Author:

Ding Xian-Fei,Li Jin-Bo,Liang Huo-Yan,Wang Zong-Yu,Jiao Ting-Ting,Liu Zhuang,Yi Liang,Bian Wei-Shuai,Wang Shu-Peng,Zhu Xi,Sun Tong-WenORCID

Abstract

Abstract Background To develop a machine learning model for predicting acute respiratory distress syndrome (ARDS) events through commonly available parameters, including baseline characteristics and clinical and laboratory parameters. Methods A secondary analysis of a multi-centre prospective observational cohort study from five hospitals in Beijing, China, was conducted from January 1, 2011, to August 31, 2014. A total of 296 patients at risk for developing ARDS admitted to medical intensive care units (ICUs) were included. We applied a random forest approach to identify the best set of predictors out of 42 variables measured on day 1 of admission. Results All patients were randomly divided into training (80%) and testing (20%) sets. Additionally, these patients were followed daily and assessed according to the Berlin definition. The model obtained an average area under the receiver operating characteristic (ROC) curve (AUC) of 0.82 and yielded a predictive accuracy of 83%. For the first time, four new biomarkers were included in the model: decreased minimum haematocrit, glucose, and sodium and increased minimum white blood cell (WBC) count. Conclusions This newly established machine learning-based model shows good predictive ability in Chinese patients with ARDS. External validation studies are necessary to confirm the generalisability of our approach across populations and treatment practices.

Funder

Capital Medical Development Research Fund China

National Natural Science Foundation of China

Beijing Natural Science Foundation

Natural Science Foundation of Henan Province

Science and Technology Innovation Talents in Universities of Henan Province

National Science and Technology Major Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3