Circular RNA circLOC101928570 suppresses systemic lupus erythematosus progression by targeting the miR-150-5p/c-myb axis

Author:

Zhao Xingwang,Dong Rui,Tang Zhongwei,Wang Juan,Wang Chunyou,Song Zhiqiang,Ni Bing,Zhang Longlong,He Xiaochong,You YiORCID

Abstract

AbstractBackgroundAccumulating evidence supports the implication of circular RNAs (circRNAs) in systemic lupus erythematosus (SLE). However, little is known about the detailed mechanisms and roles of circRNAs in the pathogenesis of SLE.MethodsQuantitative real-time PCR was used to determine the levels of circLOC101928570 and miR-150-5p in peripheral blood mononuclear cells of SLE. Overexpression and knockdown experiments were conducted to assess the effects of circLOC101928570. Fluorescence in situ hybridization, RNA immunoprecipitation, luciferase reporter assays, Western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were used to investigate the molecular mechanisms underlying the function of circLOC101928570.ResultsThe results showed that the level of circLOC101928570 was significantly downregulated in SLE and correlated with the systemic lupus erythematosus disease activity index. Functionally, circLOC101928570 acted as a miR-150-5p sponge to relieve the repressive effect on its target c-myb, which modulates the activation of immune inflammatory responses. CircLOC101928570 knockdown enhanced apoptosis. Moreover, circLOC101928570 promoted the transcriptional level of IL2RA by directly regulating the miR-150-5p/c-myb axis.ConclusionOverall, our findings demonstrated that circLOC101928570 played a critical role in SLE. The downregulation of circLOC101928570 suppressed SLE progression through the miR-150-5p/c-myb/IL2RA axis. Our findings identified that circLOC101928570 serves as a potential biomarker for the diagnosis and therapy of SLE.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3