A clinical-radiomics nomogram for the preoperative prediction of lymph node metastasis in colorectal cancer

Author:

Li Menglei,Zhang Jing,Dan Yibo,Yao Yefeng,Dai Weixing,Cai Guoxiang,Yang Guang,Tong Tong

Abstract

Abstract Background Accurate lymph node metastasis (LNM) prediction in colorectal cancer (CRC) patients is of great significance for treatment decision making and prognostic evaluation. We aimed to develop and validate a clinical-radiomics nomogram for the individual preoperative prediction of LNM in CRC patients. Methods We enrolled 766 patients (458 in the training set and 308 in the validation set) with clinicopathologically confirmed CRC. We included nine significant clinical risk factors (age, sex, preoperative carbohydrate antigen 19-9 (CA19-9) level, preoperative carcinoembryonic antigen (CEA) level, tumor size, tumor location, histotype, differentiation and M stage) to build the clinical model. We used analysis of variance (ANOVA), relief and recursive feature elimination (RFE) for feature selection (including clinical risk factors and the imaging features of primary lesions and peripheral lymph nodes), established classification models with logistic regression analysis and selected the respective candidate models by fivefold cross-validation. Then, we combined the clinical risk factors, primary lesion radiomics features and peripheral lymph node radiomics features of the candidate models to establish combined predictive models. Model performance was assessed by the area under the receiver operating characteristic (ROC) curve (AUC). Finally, decision curve analysis (DCA) and a nomogram were used to evaluate the clinical usefulness of the model. Results The clinical-primary lesion radiomics-peripheral lymph node radiomics model, with the highest AUC value (0.7606), was regarded as the candidate model and had good discrimination and calibration in both the training and validation sets. DCA demonstrated that the clinical-radiomics nomogram was useful for preoperative prediction in the clinical environment. Conclusion The present study proposed a clinical-radiomics nomogram with a combination of clinical risk factors and radiomics features that can potentially be applied in the individualized preoperative prediction of LNM in CRC patients.

Funder

National Natural Science Foundation of China

Shanghai Sailing Program

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference29 articles.

1. Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

2. Xue H, et al. Predictive value of lymph node ratio for postoperative distant metastasis of stage III colorectal cancer. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34(4):458–62.

3. Chen SL, Bilchik AJ. More extensive nodal dissection improves survival for stages I to III of colon cancer: a population-based study. Ann Surg. 2006;244(4):602–10.

4. Engstrom PF, et al. NCCN clinical practice guidelines in oncology: colon cancer. J Natl Compr Cancer Netw. 2009;7(8):778–831.

5. Watanabe T, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int J Clin Oncol. 2018;23(1):1–34.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3