Robust SNP-based prediction of rheumatoid arthritis through machine-learning-optimized polygenic risk score

Author:

Lim Ashley J. W.,Tyniana C. Tera,Lim Lee Jin,Tan Justina Wei Lynn,Koh Ee Tzun,Ang Andrea Ee Ling,Chan Grace Yin Lai,Chan Madelynn Tsu-Li,Chia Faith Li-Ann,Chng Hiok Hee,Chua Choon Guan,Howe Hwee Siew,Koh Li Wearn,Kong Kok Ooi,Law Weng Giap,Lee Samuel Shang Ming,Lian Tsui Yee,Lim Xin Rong,Loh Jess Mung Ee,Manghani Mona,Tan Sze-Chin,Teo Claire Min-Li,Thong Bernard Yu-Hor,Tjokrosaputro Paula Permatasari,Xu Chuanhui,Chong Samuel S.,Khor Chiea Chuen,Leong Khai Pang,Lee Caroline G.ORCID,

Abstract

Abstract Background The popular statistics-based Genome-wide association studies (GWAS) have provided deep insights into the field of complex disorder genetics. However, its clinical applicability to predict disease/trait outcomes remains unclear as statistical models are not designed to make predictions. This study employs statistics-free machine-learning (ML)-optimized polygenic risk score (PRS) to complement existing GWAS and bring the prediction of disease/trait outcomes closer to clinical application. Rheumatoid Arthritis (RA) was selected as a model disease to demonstrate the robustness of ML in disease prediction as RA is a prevalent chronic inflammatory joint disease with high mortality rates, affecting adults at the economic prime. Early identification of at-risk individuals may facilitate measures to mitigate the effects of the disease. Methods This study employs a robust ML feature selection algorithm to identify single nucleotide polymorphisms (SNPs) that can predict RA from a set of training data comprising RA patients and population control samples. Thereafter, selected SNPs were evaluated for their predictive performances across 3 independent, unseen test datasets. The selected SNPs were subsequently used to generate PRS which was also evaluated for its predictive capacity as a sole feature. Results Through robust ML feature selection, 9 SNPs were found to be the minimum number of features for excellent predictive performance (AUC > 0.9) in 3 independent, unseen test datasets. PRS based on these 9 SNPs was significantly associated with (P < 1 × 10–16) and predictive (AUC > 0.9) of RA in the 3 unseen datasets. A RA ML-PRS calculator of these 9 SNPs was developed (https://xistance.shinyapps.io/prs-ra/) to facilitate individualized clinical applicability. The majority of the predictive SNPs are protective, reside in non-coding regions, and are either predicted to be potentially functional SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) with un-interrogated pfSNPs. Conclusions These findings highlight the promise of this ML strategy to identify useful genetic features that can robustly predict disease and amenable to translation for clinical application.

Funder

Duke-NUS Medical School

National Medical Research Council

National Cancer Centre of Singapore

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3