Exploring the molecular mechanism of comorbidity of autism spectrum disorder and inflammatory bowel disease by combining multiple data sets

Author:

Zhu Jinyi,Meng Haoran,Zhang Li,Li YanORCID

Abstract

Abstract Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is difficult to diagnose. Inflammatory bowel disease (IBD) is a common chronic digestive disease. Previous studies have shown a potential correlation between ASD and IBD, but the pathophysiological mechanism remains unclear. The purpose of this research was to examine the biological mechanisms underlying the differentially expressed genes (DEGs) of ASD and IBD using bioinformatics tools. Methods Limma software was used to evaluate the DEGs between ASD and IBD. The GSE3365, GSE18123, and GSE150115 microarray data sets were acquired from the Gene Expression Omnibus (GEO) database. We then performed 6 analyses, namely, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation; weighted gene coexpression network analysis; correlation analysis of hub genes with autophagy, ferroptosis and immunity; transcriptional regulation analysis of hub genes; single-cell sequencing analysis; and potential therapeutic drug prediction. Results A total of 505 DEGs associated with ASD and 616 DEGs associated with IBD were identified, and 7 genes overlapped between these sets. GO and KEGG analyses revealed several pathways enriched in both diseases. A total of 98 common genes related to ASD and IBD were identified by weighted gene coexpression network analysis (WGCNA), and 4 hub genes were obtained by intersection with the 7 intersecting DEGs, which were PDGFC, CA2, GUCY1B3 and SDPR. We also found that 4 hub genes in the two diseases were related to autophagy, ferroptosis or immune factors. In addition, motif–TF annotation analysis showed that cisbp__M0080 was the most relevant motif. We also used the Connectivity Map (CMap) database to identify 4 potential therapeutic agents. Conclusion This research reveals the shared pathogenesis of ASD and IBD. In the future, these common hub genes may provide new targets for further mechanistic research as well as new therapies for patients with ASD and IBD.

Funder

National Health Commission of the People's Republic of China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3