The oncogenic role of NF1 in gallbladder cancer through regulation of YAP1 stability by direct interaction with YAP1

Author:

Zhang Lingxiao,Jiang Lin,Zeng Ling,Jin Zhaohui,Dong Xuanjia,Zhang Yuhan,Chen Litian,Shu Yijun,Liu Yingbin,Huang YingORCID

Abstract

Abstract Background Gallbladder cancer (GBC) is the most prevalent and invasive biliary tract malignancy. As a GTPase-activating protein, Neurofibromin 1 (NF1) is a tumor suppressor that negatively regulates the RAS signaling pathway, and its abnormality leads to neurofibromatosis type 1 (NF-1) disease. However, the role of NF1 playing in GBC and the underlying molecular mechanism has not been defined yet. Methods A combination of NOZ and EH-GB1 cell lines as well as nude mice, were utilized in this study. mRNA expression and protein levels of NF1 and YAP1 were evaluated by quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC). In vitro and in vivo assays were performed to explore the biological effects of NF1 in NOZ and EH-GB1 cells via siRNA or lv-shRNA mediated knockdown. Direct interaction between NF1 and YAP1 was detected by confocal microscopy and co-immunoprecipitation (Co-IP), and further confirmed by GST pull-down assay and isothermal titration calorimetry assay (ITC). The stability of proteins was measured by western blot (WB) in the presence of cycloheximide. Results This study showed that a higher level of NF1 and YAP1 was found in GBC samples than in normal tissues and associated with worse prognoses. The NF1 knockdown impaired the proliferation and migration of NOZ in vivo and in vitro by downregulating YAP1 expression. Moreover, NF1 co-localized with YAP1 in NOZ and EH-GB1 cells, and the WW domains of YAP1 specifically recognized the PPQY motif of NF1. The structural modeling also indicated the hydrophobic interactions between YAP1 and NF1. On the other hand, YAP1 knockdown also impaired the proliferation of NOZ in vitro, phenocopying the effects of NF1 knockdown. Overexpression of YAP1 can partially rescue the impaired proliferation in NF1 stably knockdown cells. In mechanism, NF1 interacted with YAP1 and increased the stability of YAP1 by preventing ubiquitination. Conclusions Our findings discovered a novel oncogenic function of NF1 by directly interacting with YAP1 protein and stabilizing YAP1 to protect it from proteasome degradation in NOZ cells. NF1 may serve as a potential therapeutic target in GBC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3