A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity

Author:

Huang Po-Lin,Kan Hung-Tsai,Hsu Ching-Hsuan,Hsieh Hsin-Ta,Cheng Wan-Chien,Huang Ren-Yeong,You Jhong-Jhe

Abstract

Abstract Background Bispecific antibody has garnered considerable attention in the recent years due to its impressive preliminary efficacy in hematological malignancies. For solid tumors, however, the main hindrance is the suppressive tumor microenvironment, which effectively impedes the activation of infiltrating T cells. Herein, we designed a bispecific antibody AP203 with high binding affinity to PD-L1 and CD137 and assessed its safety and anti-tumor efficacy, as well as explored the mechanism of action. Methods The optimal antibody binders against PD-L1 and CD137 were screened from the OmniMab phagemid library. The binding affinity of the constructed AP203 were evaluated using enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-cell stimulatory capacity was assessed using the allogeneic mixed lymphocyte reaction (MLR), antigen-specific recall response, and coculture with PD-L1-expressing cells. In vivo antitumor efficacy was evaluated using two models of tumor-xenografted humanized mice with profiling of tumor infiltrating lymphocytes (TILs). The possible toxicity of AP203 was examined using in vitro cytokine release assay by human PBMCs. Results AP203, which simultaneously targeted PD-L1 and costimulatory CD137, elicit superior agonistic effects over parental antibodies alone or in combination in terms of T cell activation, enhanced memory recall responses, and overcoming Treg-mediated immunosuppression (P < 0.05). The agonistic activity of AP203 was further demonstrated PD-L1-dependent by coculturing T cells with PD-L1-expressing cells. In vivo animal studies using immunodeficient or immunocompetent mice both showed a dose-related antitumor efficacy superior to parental antibodies in combination (P < 0.05). Correspondingly, AP203 significantly increased tumor infiltrating CD8 + T cells, while decreased CD4 + T cells, as well as Treg cells (P < 0.05), resulting in a dose-dependent increase in the CD8 + /CD4 + ratio. Moreover, either soluble or immobilized AP203 did not induce the production of inflammatory cytokines by human PBMCs. Conclusions AP203 exerts potent antitumor activity not only by blocking PD-1/PD-L1 inhibitory signaling, but also by activating CD137 costimulatory signaling in effector T cells that consequently counteracts Treg-mediated immunosuppression. Based on promising preclinical results, AP203 should be a suitable candidate for clinical treatment of solid tumors.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3