Construction of a predictive model for immunotherapy efficacy in lung squamous cell carcinoma based on the degree of tumor-infiltrating immune cells and molecular typing

Author:

Yang Lingge,Wei Shuli,Zhang Jingnan,Hu Qiongjie,Hu Wansong,Cao Mengqing,Zhang Long,Wang Yongfang,Wang Pingli,Wang KaiORCID

Abstract

Abstract Background To construct a predictive model of immunotherapy efficacy for patients with lung squamous cell carcinoma (LUSC) based on the degree of tumor-infiltrating immune cells (TIIC) in the tumor microenvironment (TME). Methods The data of 501 patients with LUSC in the TCGA database were used as a training set, and grouped using non-negative matrix factorization (NMF) based on the degree of TIIC assessed by single-sample gene set enrichment analysis (GSEA). Two data sets (GSE126044 and GSE135222) were used as validation sets. Genes screened for modeling by least absolute shrinkage and selection operator (LASSO) regression and used to construct a model based on immunophenotyping score (IPTS). RNA extraction and qPCR were performed to validate the prognostic value of IPTS in our independent LUSC cohort. The receiver operating characteristic (ROC) curve was constructed to determine the predictive value of the immune efficacy. Kaplan–Meier survival curve analysis was performed to evaluate the prognostic predictive ability. Correlation analysis and enrichment analysis were used to explore the potential mechanism of IPTS molecular typing involved in predicting the immunotherapy efficacy for patients with LUSC. Results The training set was divided into a low immune cell infiltration type (C1) and a high immune cell infiltration type (C2) by NMF typing, and the IPTS molecular typing based on the 17-gene model could replace the results of the NMF typing. The area under the ROC curve (AUC) was 0.82. In both validation sets, the IPTS of patients who responded to immunotherapy were significantly higher than those who did not respond to immunotherapy (P = 0.0032 and P = 0.0451), whereas the AUC was 0.95 (95% CI = 1.00–0.84) and 0.77 (95% CI = 0.58–0.96), respectively. In our independent cohort, we validated its ability to predict the response to cancer immunotherapy, for the AUC was 0.88 (95% CI = 1.00–0.66). GSEA suggested that the high IPTS group was mainly involved in immune-related signaling pathways. Conclusions IPTS molecular typing based on the degree of TIIC in the TME could well predict the efficacy of immunotherapy in patients with LUSC with a certain prognostic value.

Funder

National Natural Science Foundation of China

Provincial key research and development project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3