Tissue microRNAs in non-small cell lung cancer detected with a new kind of liquid bead array detection system

Author:

Zheng Yuan-Yuan,Fei Yun,Wang Zheng,Chen Yue,Qiu Cheng,Li Fu-Rong

Abstract

Abstract Background Commonly used miRNA detection methods cannot be applied for high-throughput analyses. However, this study was aimed to performed a liquid bead array detection system (LBAS) to detect tissue 6 miRNAs in non-small cell lung cancer (NSCLC). Methods In this study, evaluation of LBAS was performed to observe the precision, specificity, limitation and stability. Then, a total of 52 primary NSCLC patients who received resection operation without preoperative radiotherapy and chemotherapy between June 2013 and March 2014 were selected, and then the total RNA of the tissues were extracted. We prepared six NSCLC-related miRNAs for LBAS. After optimization and evaluation, LBAS was verified by detecting the relative expression levels of 6 microRNAs in the pathological tissues and corresponding normal tissues of 52 NSCLC patients. Results The results of evaluation of LBAS showed that the Mean Fluorescence Intensity (MFI) of the reaction only added with chimeric probes and beads showed no significant change after 180 days (P > 0.05). And the intra-assay Coefficient of Variation (CV) was between 1.57 and 3.5%, while the inter-assay CV was between 4.24 and 11.27%, indicating this system was ideal for diagnostic reagents. In addition, only the beads corresponding to the additional miRNAs showed high MFIs from 8426 to 18,769, whereas the fluorescence values of the other beads were under background levels (MFIs = 20 to 55) in each reaction, indicating no cross reactivity among the miRNAs. The limit of detection of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 were 5.27, 1.39, 1.85, 2.01, 1.34, and 2.73 amol/μL, respectively, showing that the lowest detection limit of miRNA by this system was under pM level. Then, the relative expression levels of miR-21, miR-210, miR-125b, miR-155, miR-375, and miR-31 by using this system were significantly correlated with NSCLC (P < 0.05). And the results of AUC method indicated that specific of the LBAS system was 94.2%. Conclusions Our findings suggest that LBAS was simple, high-throughput, and freely combined with absolute quantification. Thus, this system could be applied for tumor miRNAs detection.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

The Science and Technology project of Shenzhen

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3