Evaluation of the effects of meteorological factors on COVID-19 prevalence by the distributed lag nonlinear model

Author:

Ai Hongjing,Nie Rongfang,Wang XiaoshengORCID

Abstract

Abstract Background Although numerous studies have explored the impact of meteorological factors on the epidemic of COVID-19, their relationship remains controversial and needs to be clarified. Methods We assessed the risk effect of various meteorological factors on COVID-19 infection using the distributed lag nonlinear model, based on related data from July 1, 2020, to June 30, 2021, in eight countries, including Portugal, Greece, Egypt, South Africa, Paraguay, Uruguay, South Korea, and Japan, which are in Europe, Africa, South America, and Asia, respectively. We also explored associations between COVID-19 prevalence and individual meteorological factors by the Spearman’s rank correlation test. Results There were significant non-linear relationships between both temperature and relative humidity and COVID-19 prevalence. In the countries located in the Northern Hemisphere with similar latitudes, the risk of COVID-19 infection was the highest at temperature below 5 ℃. In the countries located in the Southern Hemisphere with similar latitudes, their highest infection risk occurred at around 15 ℃. Nevertheless, in most countries, high temperature showed no significant association with reduced risk of COVID-19 infection. The effect pattern of relative humidity on COVID-19 depended on the range of its variation in countries. Overall, low relative humidity was correlated with increased risk of COVID-19 infection, while the high risk of infection at extremely high relative humidity could occur in some countries. In addition, relative humidity had a longer lag effect on COVID-19 than temperature. Conclusions The effects of meteorological factors on COVID-19 prevalence are nonlinear and hysteretic. Although low temperature and relative humidity may lower the risk of COVID-19, high temperature or relative humidity could also be associated with a high prevalence of COVID-19 in some regions.

Funder

China Pharmaceutical University

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference37 articles.

1. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–4.

2. World Health Organization. Statement on the tenth meeting of the International Health Regulations (2005) Emergency Committee regarding the coronavirus disease (COVID-19) pandemic. 2022. https://www.who.int/news/item/19-01-2022-statement-on-the-tenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic. Accessed 3 Mar 2022.

3. Jones K, Patel N, Levy M, Storeygard A, Balk D, Gittleman J, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–3.

4. Paynter S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol Infect. 2015;143(6):1110–8.

5. Lim Y, Kweon O, Kim H, Kim T, Lee M. The impact of environmental variables on the spread of COVID-19 in the Republic of Korea. Sci Rep. 2021;11(1):5977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3