LINC00963-FOSB-mediated transcription activation of UBE3C enhances radioresistance of breast cancer cells by inducing ubiquitination-dependent protein degradation of TP73

Author:

Wang Yansu,Liu Ming,Liu Xiaoqian,Guo Xianling

Abstract

Abstract Background The ubiquitin protein ligase E3C (UBE3C) has been reported to play an oncogenic role in breast cancer (BRCA). This work further investigates the effect of UBE3C on the radioresistance of BRCA cells. Methods Molecules linking to radioresistance in BRCA were identified by analyzing two GEO datasets, GSE31863 and GSE101920. UBE3C overexpression or knockdown was induced in parental or radioresistant BRCA cells, followed by irradiation treatment. The malignant properties of cells in vitro, and the growth and metastatic activity of cells in nude mice, were analyzed. Downstream target proteins, as well as upstream transcriptional regulators of UBE3C, were predicted by bioinformatics tools. Molecular interactions were confirmed by immunoprecipitation and immunofluorescence assays. Furthermore, artificial alterations of TP73 and FOSB were induced in the BRCA cells for functional rescue assays. Results According to bioinformatics analyses, UBE3C expression was linked to radioresistance in BRCA. UBE3C knockdown in radioresistant BRCA cells reduced while its overexpression in parental BRCA cells increased the radioresistance of cells in vitro and in vivo. UBE3C, which induced ubiquitination-dependent protein degradation of TP73, was transcriptionally activated by FOSB. The radioresistance of cancer cells was blocked by TP73 overexpression or FOSB knockdown. Additionally, LINC00963 was found to be responsible for the recruitment of FOSB to the UBE3C promoter for transcription activation. Conclusion This work demonstrates that LINC00963 induces nuclear translocation of FOSB and the consequent transcription activation of UBE3C, which enhances radioresistance of BRCA cells by inducing ubiquitination-dependent protein degradation of TP73. Graphical Abstract

Funder

National Natural Science Foundation of China

Shanghai Municipal Health Commission

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3