Assessing the causal association between human blood metabolites and the risk of epilepsy

Author:

Cai Jiahao,Li Xiaoyu,Wu Shangbin,Tian Yang,Zhang Yani,Wei Zixin,Jin Zixiang,Li Xiaojing,Chen Xiong,Chen Wen-XiongORCID

Abstract

Abstract Background Metabolic disturbance has been reported in patients with epilepsy. Still, the evidence about the causal role of metabolites in facilitating or preventing epilepsy is lacking. Systematically investigating the causality between blood metabolites and epilepsy would help provide novel targets for epilepsy screening and prevention. Methods We conducted two-sample Mendelian randomization (MR) analysis. Data for 486 human blood metabolites came from a genome-wide association study (GWAS) comprising 7824 participants. GWAS data for epilepsy were obtained from the International League Against Epilepsy (ILAE) consortium for primary analysis and the FinnGen consortium for replication and meta-analysis. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy. Results 482 out of 486 metabolites were included for MR analysis following rigorous genetic variants selection. After IVW and sensitivity analysis filtration, six metabolites with causal effects on epilepsy were identified from the ILAE consortium. Only four metabolites remained significant associations with epilepsy when combined with the FinnGen consortium [uridine: odds ratio (OR) = 2.34, 95% confidence interval (CI) = 1.48–3.71, P = 0.0003; 2-hydroxystearate: OR = 1.61, 95% CI = 1.19–2.18, P = 0.002; decanoylcarnitine: OR = 0.82, 95% CI = 0.72–0.94, P = 0.004; myo-inositol: OR = 0.77, 95% CI = 0.62–0.96, P = 0.02]. Conclusion The evidence that the four metabolites mentioned above are associated with epilepsy in a causal way provides a novel insight into the underlying mechanisms of epilepsy by integrating genomics with metabolism, and has an implication for epilepsy screening and prevention.

Funder

Research Foundation of Guangzhou Women and Children's Medical Center for Clinical Doctor

Chinese Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3