Abstract
AbstractResearchers expect a high quality of biospecimens/data and value-added services from biobanks. Therefore, the concept of “biobank 3.0” was introduced so that biobanks could better meet the needs of stakeholders and maintain sustainable operations. Theoretically, the Taiwan Biobank (TWB) has already gone through the concepts of biobank 1.0 and 2.0. However, three challenges still need to be addressed before it can be transformed into a new generation of the TWB (namely, the TWB 3.0): (1) the difficulty of integrating other biobanks’ resources, (2) the efficiency and effectiveness of the release and use of biospecimens/data, and (3) the development of income and revenue models of sustainability. To address these issues, this paper proposes a framework for the TWB 3.0 transformation based on a dual-pillar approach composed of a “physically” vertical integration driven by the TWB and a “virtually” horizontal network led by the National Health Research Institutes (NHRI) of Taiwan. Using prominent biobanks such as the Biobanking and BioMolecular Resources Research Infrastructure-European Research Infrastructure Consortium (BBMRI-ERIC), the UK Biobank, and the National Institutes of Health (NIH)’s All of Us Research Program as models, the TWB can strengthen its on-going TWB 2.0 operations in regional and/or international collaboration, increase the value of data collected and develop closer relationships with biobank participants and users. To these ends, the authors highlight key issues that include, but are not limited to, the harmonization of relevant ELSI standards for various biobanks’ integrations; the value-added services and the efficiency of Big Data Era related research and/or precision medicine development, and financial concerns related to biobank sustainability. This paper concludes by discussing how greater participant engagement and the uptake of Information Technology (IT) and Artificial Intelligence (AI) applications can be used in partnership with vertical and horizontal integration as part of a four-pronged approach to promote biobank sustainability, and facilitate the TWB 3.0 transformation.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference49 articles.
1. Lin JC, Chen LK, Hsiao WWW, et al. Next chapter of the Taiwan Biobank: sustainability and perspectives. Biopreserv Biobank. 2019;17(2):189–97.
2. BCC Research. Biobanking: technologies and global markets. Business Communications Company Inc. (BCC), USA. 2016. https://www.bccresearch.com/market-research/biotechnology/biobanking-technologies-markets-report.html. Accessed 30 June 2020.
3. Stephens N, Dimond R. Closure of a human tissue biobank: individual, institutional, and field rxpectations during cycles of promise and disappointment. New Genet Soc. 2015;34(4):417–36.
4. Henderson M, Simeon-Dubach D, Albert M. Finding the path to biobank sustainability through sound business planning. Biopreserv Biobank. 2015;13(6):385–6.
5. Coppola L, Cianflone A, Grimaldi AM, et al. Biobanking in health care: evolution and future directions. J Transl Med. 2019;17:172.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献