A continuous data driven translational model to evaluate effectiveness of population-level health interventions: case study, smoking ban in public places on hospital admissions for acute coronary events

Author:

Bonakdari HosseinORCID,Pelletier Jean-PierreORCID,Martel-Pelletier JohanneORCID

Abstract

Abstract Background An important task in developing accurate public health intervention evaluation methods based on historical interrupted time series (ITS) records is to determine the exact lag time between pre- and post-intervention. We propose a novel continuous transitional data-driven hybrid methodology using a non-linear approach based on a combination of stochastic and artificial intelligence methods that facilitate the evaluation of ITS data without knowledge of lag time. Understanding the influence of implemented intervention on outcome(s) is imperative for decision makers in order to manage health systems accurately and in a timely manner. Methods To validate a developed hybrid model, we used, as an example, a published dataset based on a real health problem on the effects of the Italian smoking ban in public spaces on hospital admissions for acute coronary events. We employed a continuous methodology based on data preprocessing to identify linear and nonlinear components in which autoregressive moving average and generalized structure group method of data handling were combined to model stochastic and nonlinear components of ITS. We analyzed the rate of admission for acute coronary events from January 2002 to November 2006 using this new data-driven hybrid methodology that allowed for long-term outcome prediction. Results Our results showed the Pearson correlation coefficient of the proposed combined transitional data-driven model exhibited an average of 17.74% enhancement from the single stochastic model and 2.05% from the nonlinear model. In addition, data demonstrated that the developed model improved the mean absolute percentage error and correlation coefficient values for which 2.77% and 0.89 were found compared to 4.02% and 0.76, respectively. Importantly, this model does not use any predefined lag time between pre- and post-intervention. Conclusions Most of the previous studies employed the linear regression and considered a lag time to interpret the impact of intervention on public health outcome. The proposed hybrid methodology improved ITS prediction from conventional methods and could be used as a reliable alternative in public health intervention evaluation.

Funder

Osteoarthritis Research Unit, CRCHUM

Chair in Osteoarthritis, University of Montreal

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic modeling;Stochastic Modeling;2022

2. Goodness-of-fit & precision criteria;Stochastic Modeling;2022

3. Preparation & stationarizing;Stochastic Modeling;2022

4. Introduction;Stochastic Modeling;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3