LncRNA AC142119.1 facilitates the progression of neuroblastoma by epigenetically initiating the transcription of MYCN

Author:

Yang Rui,Liu Nanjing,Li Ting,Liu Fangjie,Zhang Jun,Zhao Hui,Zou Lin,He XiaoyanORCID

Abstract

Abstract Background Oncogene MYCN is closely related with malignant progression and poor prognosis of neuroblastoma (NB). Recently, long non-coding RNAs (lncRNAs) have been recognized as crucial regulators in various cancers. However, whether lncRNAs contribute to the overexpression of MYCN in NB is unclear. Methods Microarray analysis were applied to analyze the differentially expressed lncRNAs between MYCN-amplified and MYCN-non-amplified NB cell lines. Bioinformatic analyses were utilized to identify lncRNAs nearby MYCN locus. qRT-PCR was used to detect the expression level of lncRNA AC142119.1 in NB cell lines and tissues. Gain- and loss-of-function assays were conducted to investigate the biological effect of AC142119.1 in NB. Fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, mass spectrometry, RNA electrophoretic mobility shift, chromatin immunoprecipitation and chromatin isolation by RNA purification assays were performed to validate the interaction between AC142119.1 and WDR5 protein as well as MYCN promoter. Results AC142119.1 was significantly elevated in NB tissues with MYCN amplification, advanced INSS stage and high risk, and associated with poor survival of NB patients. Moreover, enforced expression of AC142119.1 reinforced the proliferation of NB cells in vitro and in vivo. Additionally, AC142119.1 specifically recruited WDR5 protein to interact with MYCN promoter, further initiating the transcription of MYCN and accelerating NB progression. Conclusions We identified a novel lncRNA AC142119.1, which promoted the progression of NB through epigenetically initiating the transcription of MYCN via interacting with both WDR5 protein and the promoter of MYCN, indicating that AC142119.1 might be a potential diagnostic biomarker and therapeutic target for NB.

Funder

National Natural Science Foundation of China

Chongqing Bureau of Science and Technology and Chongqing Municipal Health Commision Joint Research Project

General Basic Research Project from the Ministry of Education Key Laboratory of Child Development and Disorders

Chongqing Graduate Scientific Research Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3