Author:
Chen Jinbin,Rao Boqi,Huang Zeqin,Xie Chen,Yu Yonghui,Yang Binyao,Wu Di,Wang Dedong,Qiu Fuman,Zhou Yifeng,Deng Yibin,Lu Jiachun
Abstract
Abstract
Background
Lung cancer is the most prevalent cancer worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of all cases. Circular RNAs(circRNA) play crucial roles in regulating the progression of lung cancer. Despite the identification of a large number of circRNAs, their expression patterns, functions, and mechanisms of action in NSCLC development remain unclear.This study aims to investigate the transcriptional expressions, functions, and potential mechanisms of circRNA hsa_circ_0050386 in NSCLC.
Methods
Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for the analysis of hsa_circ_0050386 expression. Cell proliferation was detected using the IncuCyte Live Cell Analysis System and clone formation assays. Migration and invasion of NSCLC cells were evaluated through Transwell assays. Flow cytometry was performed to assay cell cycle and apoptosis. Western blot was used to investigate protein expression. Protein binding analysis was conducted by employing pull-down assays, RNA immunoprecipitation (RIP), and mass spectrometry. The role of hsa_circ_0050386 in vivo was evaluated through the use of a xenograft model.
Results
The study discovered that hsa_circ_0050386 displayed lower expression levels in NSCLC tissues when compared to adjacent normal tissues. Patients exhibiting lower levels of hsa_circ_0050386 expression exhibited an inverse correlation with the Clinical Stage, T-stage, and M-stage of NSCLC. Functionally, hsa_circ_0050386 suppressed the proliferation and invasion of NSCLC cells both in vitro and in vivo. A comprehensive examination exposed the interaction between hsa_circ_0050386 and RNA binding protein Serine and arginine-rich splicing factor 3 (SRSF3), resulting in the down-regulation of Fibronectin 1 (FN1) expression, which inhibits the progression of NSCLC.
Conclusions
Our study shows that hsa_circ_0050386 suppresses the malignant biological behavior of NSCLC cells by down-regulating the expression of FN1, and may serve as a potential biomarker and therapeutic target for NSCLC treatment.
Funder
National Natural Science Foundation of China Grant
Local Innovative and Research Team Project of Guangdong Pearl River Talents Program
Yangcheng Scholars Research Project of Guangzhou
Basic and Applied Basic Research Foundation of Guangdong Province
Key Technologies Research and Development Program of Guangzhou Municipality
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献