Clinical applications of machine learning in the survival prediction and classification of sepsis: coagulation and heparin usage matter

Author:

Guo FeiORCID,Zhu Xishun,Wu Zhiheng,Zhu Li,Wu Jianhua,Zhang Fan

Abstract

Abstract Background Sepsis is a life-threatening syndrome eliciting highly heterogeneous host responses. Current prognostic evaluation methods used in clinical practice are characterized by an inadequate effectiveness in predicting sepsis mortality. Rapid identification of patients with high mortality risk is urgently needed. The phenotyping of patients will assistant invaluably in tailoring treatments. Methods Machine learning and deep learning technology are used to characterize the patients’ phenotype and determine the sepsis severity. The database used in this study is MIMIC-III and MIMIC-IV (‘Medical information Mart for intensive care’) which is a large, public, and freely available database. The K-means clustering is used to classify the sepsis phenotype. Convolutional neural network (CNN) was used to predict the 28-day survival rate based on 35 blood test variables of the sepsis patients, whereas a double coefficient quadratic multivariate fitting function (DCQMFF) is utilized to predict the 28-day survival rate with only 11 features of sepsis patients. Results The patients were grouped into four clusters with a clear survival nomogram. The first cluster (C_1) was characterized by low white blood cell count, low neutrophil, and the highest lymphocyte proportion. C_2 obtained the lowest Sequential Organ Failure Assessment (SOFA) score and the highest survival rate. C_3 was characterized by significantly prolonged PTT, high SIC, and a higher proportion of patients using heparin than the patients in other clusters. The early mortality rate of patients in C_3 was high but with a better long-term survival rate than that in C_4. C_4 contained septic coagulation patients with the worst prognosis, characterized by slightly prolonged partial thromboplastin time (PTT), significantly prolonged prothrombin time (PT), and high septic coagulation disease score (SIC). The survival rate prediction accuracy of CNN and DCQMFF models reached 92% and 82%, respectively. The models were tested on an external dataset (MIMIC-IV) and achieved good performance. A DCQMFF-based application platform was established for fast prediction of the 28-day survival rate. Conclusion CNN and DCQMFF accurately predicted the sepsis patients’ survival, while K-means successfully identified the phenotype groups. The distinct phenotypes associated with survival, and significant features correlated with mortality were identified. The findings suggest that sepsis patients with abnormal coagulation had poor outcomes, abnormal coagulation increase mortality during sepsis. The anticoagulation effects of appropriate heparin sodium treatment may improve extensive micro thrombosis-caused organ failure.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3