Abstract
Abstract
Background
A major obstacle to anti-viral and -tumor cell vaccination and T cell immunotherapy is the ability to produce dendritic cells (DCs) in a suitable clinical setting. It is imperative to develop closed cell culture systems to accelerate the translation of promising DC-based cell therapy products to the clinic. The objective of this study was to investigate whether viral antigen-loaded monocyte-derived DCs (Mo-DCs) capable of eliciting specific T cell activation can be manufactured in fluorinated ethylene propylene (FEP) bags.
Methods
Mo-DCs were generated through a protocol applying cytokine cocktails combined with lipopolysaccharide or with a CMV viral peptide antigen in conventional tissue culture polystyrene (TCPS) or FEP culture vessels. Research-scale (< 10 mL) FEP bags were implemented to increase R&D throughput. DC surface marker profiles, cytokine production, and ability to activate antigen-specific cytotoxic T cells were characterized.
Results
Monocyte differentiation into Mo-DCs led to the loss of CD14 expression with concomitant upregulation of CD80, CD83 and CD86. Significantly increased levels of IL-10 and IL-12 were observed after maturation on day 9. Antigen-pulsed Mo-DCs activated antigen-responsive CD8+ cytotoxic T cells. No significant differences in surface marker expression or tetramer-specific T cell activating potency of Mo-DCs were observed between TCPS and FEP culture vessels.
Conclusions
Our findings demonstrate that viral antigen-loaded Mo-DCs produced in downscaled FEP bags can elicit specific T cell responses. In view of the dire clinical need for closed system DC manufacturing, FEP bags represent an attractive option to accelerate the translation of promising emerging DC-based immunotherapies.
Funder
Saint-Gobain Ceramics & Plastics, Inc.
Hopital Maisonneuve-Rosemont Foundation
Fonds de Recherche du Québec - Santé
Canada Foundation for Innovation
Canada Excellence Research Chairs, Government of Canada
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference39 articles.
1. U.S. Department of Health and Human Services FaDA. Sterile drug products produced by aseptic processing–current good manufacturing practice. In: Center for Drug Evaluation and Research (CDER) CfBEaRC, Office of Regulatory Affairs (ORA), editor. Rockville2004.
2. Bastien JP, Minguy A, Dave V, Roy DC. Cellular therapy approaches harnessing the power of the immune system for personalized cancer treatment. Semin Immunol. 2019;42:101306.
3. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74–95.
4. Cannon MJ, Block MS, Morehead LC, Knutson KL. The evolving clinical landscape for dendritic cell vaccines and cancer immunotherapy. Immunotherapy. 2019;11(2):75–9.
5. Chapuis F, Rosenzwajg M, Yagello M, Ekman M, Biberfeld P, Gluckman JC. Differentiation of human dendritic cells from monocytes in vitro. Eur J Immunol. 1997;27(2):431–41.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献