Smooth muscle cell fate decisions decipher a high-resolution heterogeneity within atherosclerosis molecular subtypes

Author:

Zhang Ge,Liu Zaoqu,Deng Jinhai,Liu Long,Li Yu,Weng Siyuan,Guo Chunguang,Zhou Zhaokai,Zhang Li,Wang Xiaofang,Liu Gangqiong,Guo Jiacheng,Bai Jing,Wang Yunzhe,Du Youyou,Li Tao-Sheng,Tang JunnanORCID,Zhang Jinying

Abstract

Abstract Background Mounting evidence has revealed the dynamic variations in the cellular status and phenotype of the smooth muscle cell (SMC) are vital for shaping the atherosclerotic plaque microenvironment and ultimately mapping onto heterogeneous clinical outcomes in coronary artery disease. Currently, the underlying clinical significance of SMC evolutions remains unexplored in atherosclerosis. Methods The dissociated cells from diseased segments within the right coronary artery of four cardiac transplant recipients and 1070 bulk samples with atherosclerosis from six bulk cohorts were retrieved. Following the SMC fate trajectory reconstruction, the MOVICS algorithm integrating the nearest template prediction was used to develop a stable and robust molecular classification. Subsequently, multi-dimensional potential biological implications, molecular features, and cell landscape heterogeneity among distinct clusters were decoded. Results We proposed an SMC cell fate decision signature (SCFDS)-based atherosclerosis stratification system and identified three SCFDS subtypes (C1–C3) with distinguishing features: (i) C1 (DNA-damage repair type), elevated base excision repair (BER), DNA replication, as well as oxidative phosphorylation status. (ii) C2 (immune-activated type), stronger immune activation, hyper-inflammatory state, the complex as well as varied lesion microenvironment, advanced stage, the most severe degree of coronary stenosis severity. (iii) C3 (stromal-rich type), abundant fibrous content, stronger ECM metabolism, immune-suppressed microenvironment. Conclusions This study uncovered atherosclerosis complex cellular heterogeneity and a differentiated hierarchy of cell populations underlying SMC. The novel high-resolution stratification system could improve clinical outcomes and facilitate individualized management.

Funder

the National Natural Science Foundation of China

Yunan Ten Thousand Talents Plan Young and Elite Talents Project

Excellent Youth Science Foundation of Henan Province

Henan Key Laboratory of Non-ferrous Metal Materials Science and Processing Technology

Ten Thousand Talent Plans for Young Top-notch Talents of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3