XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer

Author:

Li Qingqing,Yang Hui,Wang Peipei,Liu Xiaocen,Lv Kun,Ye MingquanORCID

Abstract

Abstract Background For a long time, breast cancer has been a leading cancer diagnosed in women worldwide, and approximately 90% of cancer-related deaths are caused by metastasis. For this reason, finding new biomarkers related to metastasis is an urgent task to predict the metastatic status of breast cancer and provide new therapeutic targets. Methods In this research, an efficient model of eXtreme Gradient Boosting (XGBoost) optimized by a grid search algorithm is established to realize auxiliary identification of metastatic breast tumors based on gene expression. Estimated by ten-fold cross-validation, the optimized XGBoost classifier can achieve an overall higher mean AUC of 0.82 compared to other classifiers such as DT, SVM, KNN, LR, and RF. Results A novel 6-gene signature (SQSTM1, GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) was selected by feature importance ranking and a series of in vitro experiments were conducted to verify the potential role of each biomarker. In general, the effects of SQSTM in tumor cells are assigned as a risk factor, while the effects of the other 5 genes (GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) in immune cells are assigned as protective factors. Conclusions Our findings will allow for a more accurate prediction of the metastatic status of breast cancer and will benefit the mining of breast cancer metastasis-related biomarkers.

Funder

National Natural Science Foundation of China

the Open Project of Key Laboratory of Anhui Universities for Noncoding RNA Transformation in Major Diseases

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3