Abstract
Abstract
Background
For a long time, breast cancer has been a leading cancer diagnosed in women worldwide, and approximately 90% of cancer-related deaths are caused by metastasis. For this reason, finding new biomarkers related to metastasis is an urgent task to predict the metastatic status of breast cancer and provide new therapeutic targets.
Methods
In this research, an efficient model of eXtreme Gradient Boosting (XGBoost) optimized by a grid search algorithm is established to realize auxiliary identification of metastatic breast tumors based on gene expression. Estimated by ten-fold cross-validation, the optimized XGBoost classifier can achieve an overall higher mean AUC of 0.82 compared to other classifiers such as DT, SVM, KNN, LR, and RF.
Results
A novel 6-gene signature (SQSTM1, GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) was selected by feature importance ranking and a series of in vitro experiments were conducted to verify the potential role of each biomarker. In general, the effects of SQSTM in tumor cells are assigned as a risk factor, while the effects of the other 5 genes (GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) in immune cells are assigned as protective factors.
Conclusions
Our findings will allow for a more accurate prediction of the metastatic status of breast cancer and will benefit the mining of breast cancer metastasis-related biomarkers.
Funder
National Natural Science Foundation of China
the Open Project of Key Laboratory of Anhui Universities for Noncoding RNA Transformation in Major Diseases
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献