Abstract
Abstract
Background
Myocardial infarction (MI) has recently accounted for more than one-third of global mortality. Multiple molecular pathological pathways, such as oxidative stress, inflammation, and mitochondrial dysfunction, have been recognized as possible mechanisms in the development of MI. Furthermore, different phases of ischemic injury following the progression of MI were also associated with multiple types of programmed cell death (PCDs), including apoptosis, necroptosis, ferroptosis, and pyroptosis. However, it remains unknown whether which types of PCDs play the most dominant role in post-myocardial infarction (post-MI).
Method
In this study, we used a preclinical rat model of MI induced by permanent left anterior descending coronary artery (LAD) ligation (n = 6) or a sham operated rat model (n = 6). After a 5-week experiment, cardiac function and morphology, mitochondrial studies, and molecular signaling analysis of PCDs were determined.
Results
Herein, we demonstrated that post-MI rats had considerably impaired cardiac geometry, increased oxidative stress, myocardial injuries, and subsequently contractile dysfunction. They also exhibited worsened cardiac mitochondrial function and dynamic imbalance. More importantly, we found that post-MI mediated abundant myocardial cell death through multiple PCDs, including apoptosis, necroptosis, and pyroptosis, but not ferroptosis.
Conclusion
In this study, we provide the first insights into the mechanism of PCDs by pyroptosis, which is leveraged as the most dominant mode of cell death after MI.
Funder
National Science and Technology Development Agency
National Research Council of Thailand
Chiang Mai University
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献