Identification of metabolism-related subtypes and feature genes in Alzheimer’s disease

Author:

Lian Piaopiao,Cai Xing,Wang Cailin,Liu Ke,Yang Xiaoman,Wu Yi,Zhang Zhaoyuan,Ma Zhuoran,Cao Xuebing,Xu YanORCID

Abstract

Abstract Background Owing to the heterogeneity of Alzheimer's disease (AD), its pathogenic mechanisms are yet to be fully elucidated. Evidence suggests an important role of metabolism in the pathophysiology of AD. Herein, we identified the metabolism-related AD subtypes and feature genes. Methods The AD datasets were obtained from the Gene Expression Omnibus database and the metabolism-relevant genes were downloaded from a previously published compilation. Consensus clustering was performed to identify the AD subclasses. The clinical characteristics, correlations with metabolic signatures, and immune infiltration of the AD subclasses were evaluated. Feature genes were screened using weighted correlation network analysis (WGCNA) and processed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, three machine-learning algorithms were used to narrow down the selection of the feature genes. Finally, we identified the diagnostic value and expression of the feature genes using the AD dataset and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. Results Three AD subclasses were identified, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. MCA contained signatures associated with high AD progression and may represent a high-risk subclass compared with the other two subclasses. MCA exhibited a high expression of genes related to glycolysis, fructose, and galactose metabolism, whereas genes associated with the citrate cycle and pyruvate metabolism were downregulated and associated with high immune infiltration. Conversely, MCB was associated with citrate cycle genes and exhibited elevated expression of immune checkpoint genes. Using WGCNA, 101 metabolic genes were identified to exhibit the strongest association with poor AD progression. Finally, the application of machine-learning algorithms enabled us to successfully identify eight feature genes, which were employed to develop a nomogram model that could bring distinct clinical benefits for patients with AD. As indicated by the AD datasets and qRT-PCR analysis, these genes were intimately associated with AD progression. Conclusion Metabolic dysfunction is associated with AD. Hypothetical molecular subclasses of AD based on metabolic genes may provide new insights for developing individualized therapy for AD. The feature genes highly correlated with AD progression included GFAP, CYB5R3, DARS, KIAA0513, EZR, KCNC1, COLEC12, and TST.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3