Upregulation of HMGB1 in tumor-associated macrophages induced by tumor cell-derived lactate further promotes colorectal cancer progression

Author:

Gao Xinyi,Zhou Shiqi,Qin Zhaofu,Li Dechuan,Zhu Yuping,Ma DeningORCID

Abstract

Abstract Background Lactate accumulation leads to an acidic tumor microenvironment (TME), in turn promoting colorectal cancer (CRC) progression. Tumor-associated macrophages (TAMs) are the predominant cells in TME. This study aimed to reveal the regulation mechanism of CRC cell-derived lactate on TAMs and explore the mechanism underlying lactate accumulation-induced aggravation in CRC. Methods Cell growth and metastasis were evaluated by colony formation, Transwell, and wound healing assays. Western blot and RT-qPCR were applied to determine the protein and mRNA expression. Flow cytometry was used to analyze the polarization state and apoptotic rate of macrophages induced in THP-1 cells. The lactate in the cell supernatant was quantified using an ELISA kit. Immunofluorescence was performed to visualize the location of High Mobility Group Box 1 (HMGB1). H&E and Ki67 staining assays were used to assess tumorigenesis in nude mice bearing ectopic tumors. Results Cell growth and metastasis were promoted in the hypoxic CRC cells. The hypoxic cell supernatant stimulated the M2-type polarization of macrophages. The lactate level increased in hypoxic cancer cells. However, the inhibition of lactate using 3-hydroxy-butyrate (3-OBA) reversed the effects of hypoxia. Also, macrophages showed no promoting effect on cancer cell growth and migration in the presence of 3-OBA. HMGB1 was secreted into the extracellular space of lactate-induced macrophages, further enhancing the malignant behaviors of cancer cells. ERK, EMT, and Wnt signaling pathways were activated in cancer cells due to HMGB1 upregulation. Conclusions The lactate metabolized by cancer cells stimulated M2 polarization and HMGB1 secretion by macrophages, aggravating the carcinogenic behaviors of cancer cells.

Funder

Natural Science Foundation of Zhejiang Province

Medical Science and Technology Project of Zhejiang Province

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3